Taking the reservoir of the Lower Permian Jiamuhe Formation Conglomerate Gas Reservoir in the Zhongguai Uplift as a research case, based on core observation, optical microscopy, and full spectrum scanning electron microscopy, this paper analyzes the development characteristics of turbidite in conglomerate reservoirs, explores its genetic mechanism, and analyzes the effects of filling, dissolution, and content changes of turbidite on reservoir properties. The following understanding are obtained. 1) Turbidite is not only filled in conglomerates, andesitic gravels, and primary gas pores within the particles, but also widely distributed among the gravel skeleton particles, accounting for over 80% of the cement content. It is closely related to the composition of basic and alkaline volcanic parent rocks in the study area. 2) The origin of zeolite in the study area can be divided into two types: endogenous and exogenous. The zeolite formed by endogenesis is filled in the primary pores of andesitic gravel, which is related to the low-temperature hydrothermal process or contact metasomatism of volcanic rock; The zeolite of exogenic type is formed by the alteration of various volcanic lava and tuff with high glassy content by alkaline aqueous solution after devitrification and filling in the pores of gravel skeleton, which makes the reservoir compact. The typical zeolite is formed by weathering and leaching. 3) Zeolites have a significant impact on the reservoirs in the study area. In the early alkaline environment, the filling and cementation of a large amount of zeolites have a negative effect on the densification of the reservoir. In the later acidic environment, some zeolites have a positive effect on the dissolution of secondary pores, with a large amount of filling in the gravel pores leading to the negative effect of densification. In summary, the degree of cementation, content, and later dissolution of zeolite minerals control the reservoir performance.