北京大学学报自然科学版 ›› 2025, Vol. 61 ›› Issue (3): 465-477.DOI: 10.13209/j.0479-8023.2025.014

上一篇    下一篇

基于无量纲化湍流方程组的风速–气压关联与湍流动能变化关系研究

刘子涵1, 曹竹音1, 张宏昇1,†, 宋宇2, 康凌2   

  1. 1. 北京大学物理学院大气与海洋科学系, 气候与海–气实验室, 北京 100871 2. 北京大学环境科学与工程学院环境科学系, 环境模拟与污染控制国家重点联合实验室, 北京 100871
  • 收稿日期:2024-04-02 修回日期:2024-07-26 出版日期:2025-05-20 发布日期:2025-05-20
  • 通讯作者: 张宏昇, E-mail: hsdq(at)pku.edu.cn
  • 基金资助:
    北京市科技计划项目(Z241100009124014)、国家重点研发计划(2023YFC3706301)和国家自然科学基金(42175092)资助

Characterization of Wind-Pressure Coupling and Turbulent Kinetic Energy Change Based on Nondimentionalization of Turbulence Equations

LIU Zihan1, CAO Zhuyin1, ZHANG Hongsheng1,†, SONG Yu2, KANG Ling2   

  1. 1. Laboratory for Climate and Oceanic-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871
  • Received:2024-04-02 Revised:2024-07-26 Online:2025-05-20 Published:2025-05-20
  • Contact: ZHANG Hongsheng, E-mail: hsdq(at)pku.edu.cn

摘要:

利用内蒙古科尔沁地区大气边界层与大气环境综合实验站观测资料, 分析2019年夏季气压与风速的湍流统计特征, 量化风速–气压关联与湍流动能的变化关系。结果表明, 气压方差谱在惯性副区满足−5/3幂次律, 具有明显的非定常性和大气层结依赖性; 基于湍流动能收支方程和风速收支方程的气压脉动归一化标准差与稳定度参数的关系, 分别呈现线性规律和指数规律; 气压脉动归一化标准差的时间变率和风速–气压协方差谱均可以反映风速–气压关联的强度以及与湍流动能变化的关系。日出时, 风速–气压关联较强, 对湍流动能正贡献, 并随大气不稳定层结的发展逐渐减弱; 日落后, 气压–风速关联重新形成, 并逐渐消耗湍流动能。气压对湍流动能的贡献与大气层结条件密切相关, 对大气湍流运动有重要作用。

关键词: 气压脉动, 风速–气压关联, 归一化标准差, 湍流动能

Abstract:

Observational data from the Atmospheric Boundary Layer and Atmospheric Environment Comprehensive Experimental Station in Naiman, Inner Mongolia, from June to August 2019 were utilized. The turbulent statistical characteristics of pressure and wind speed were analyzed, and the variation relationship between wind-pressure coupling and turbulent kinetic energy was quantified. The results indicate that the pressure variance spectrum follows the overall −5/3 scaling law in the inertial subrange, exhibiting clear non-stationarity and dependence on stratification conditions. The relationship between normalized standard deviation of pressure and stability parameter exhibits a linear pattern based on the turbulent kinetic energy budget equation, while demonstrating an exponential pattern derived from the wind speed budget equation. The temporal derivative of the normalized standard deviation of pressure fluctuation and the wind-pressure covariance spectrum jointly reveal the relationship between wind-pressure coupling and turbulent kinetic energy changes. At sunrise, the wind-pressure coupling is strong, making a positive contribution to turbulent kinetic energy, which gradually weakens with the development of unstable atmospheric layers. After sunset, the wind-pressure coupling is reconstructed and gradually consumes turbulent kinetic energy. The analysis above underscores the significant role of pressure in turbulence kinetic energy, closely tied to atmospheric stratification conditions and essential for understanding atmospheric turbulence. 

Key words: pressure fluctuation, wind-pressure coupling, normalized standard deviation, turbulent kinetic energy