Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (5): 899-904.DOI: 10.13209/j.0479-8023.2017.094
• Orginal Article • Previous Articles Next Articles
Tianyu ZHANG1, Quanlin ZHAO1, Zhenzhong ZHANG2, Zhenming JIANG2, Hongping SU2, Xuewen GAO2, Zhengfang YE1()
Received:
2016-04-21
Revised:
2016-05-16
Online:
2017-09-20
Published:
2017-09-20
张天宇1, 赵泉林1, 张振中2, 姜振明2, 苏宏平2, 高学文2, 叶正芳1()
基金资助:
Tianyu ZHANG, Quanlin ZHAO, Zhenzhong ZHANG, Zhenming JIANG, Hongping SU, Xuewen GAO, Zhengfang YE. Treatment of 2,4-DNT-3-SA Contaminated Soil by a Biological Leaching Method[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 899-904.
张天宇, 赵泉林, 张振中, 姜振明, 苏宏平, 高学文, 叶正芳. 生物淋洗法修复2,4-DNT-3-SA污染土壤[J]. 北京大学学报自然科学版, 2017, 53(5): 899-904.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.094
门 | 相对丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | |
Proteobacteria | 60.64 | 78.03 | 34.95 | 40.39 | 56.64 | 38.64 | 87.65 | 27.86 |
Firmicutes | 26.83 | 15.50 | 28.09 | 46.81 | 35.74 | 36.93 | 5.81 | 59.32 |
Actinobacteria | 8.68 | 3.11 | 29.87 | 9.14 | 4.77 | 18.98 | 5.24 | 9.86 |
Bacteroidetes | 3.10 | 2.04 | 0.78 | 1.82 | 1.70 | 4.21 | 0.27 | 1.95 |
Chloroflexi | 0.11 | 0.22 | 4.29 | 0.67 | 0.46 | 0.56 | 0.25 | 0.44 |
Gemmatimonadetes | 0.02 | 0.09 | 0.61 | 0.27 | 0.06 | 0.09 | 0.13 | 0.07 |
Verrucomicrobia | 0.01 | 0.41 | 0 | 0.09 | 0 | 0 | 0.39 | 0.01 |
Cyanobacteria | 0.02 | 0 | 0 | 0.24 | 0.06 | 0.08 | 0.01 | 0 |
Thermotogae | 0 | 0 | 0.22 | 0 | 0.03 | 0 | 0 | 0.12 |
Crenarchaeota | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
Table1 Relative abundance of dominant bacteria at the phyla level in the soil
门 | 相对丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | |
Proteobacteria | 60.64 | 78.03 | 34.95 | 40.39 | 56.64 | 38.64 | 87.65 | 27.86 |
Firmicutes | 26.83 | 15.50 | 28.09 | 46.81 | 35.74 | 36.93 | 5.81 | 59.32 |
Actinobacteria | 8.68 | 3.11 | 29.87 | 9.14 | 4.77 | 18.98 | 5.24 | 9.86 |
Bacteroidetes | 3.10 | 2.04 | 0.78 | 1.82 | 1.70 | 4.21 | 0.27 | 1.95 |
Chloroflexi | 0.11 | 0.22 | 4.29 | 0.67 | 0.46 | 0.56 | 0.25 | 0.44 |
Gemmatimonadetes | 0.02 | 0.09 | 0.61 | 0.27 | 0.06 | 0.09 | 0.13 | 0.07 |
Verrucomicrobia | 0.01 | 0.41 | 0 | 0.09 | 0 | 0 | 0.39 | 0.01 |
Cyanobacteria | 0.02 | 0 | 0 | 0.24 | 0.06 | 0.08 | 0.01 | 0 |
Thermotogae | 0 | 0 | 0.22 | 0 | 0.03 | 0 | 0 | 0.12 |
Crenarchaeota | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
属 | 相对丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | |
Sporolactobacillus | 1.88 | 8.96 | 8.45 | 9.67 | 1.51 | 3.71 | 3.80 | 16.1 |
Sphingobium | 4.00 | 4.88 | 4.76 | 11.08 | 24.87 | 16.87 | 16.69 | 15.15 |
Pseudomonas | 20.51 | 16.68 | 26.59 | 26.31 | 9.49 | 10.09 | 12.22 | 7.63 |
Lactococcus | 7.89 | 5.78 | 2.29 | 0.08 | 4.05 | 4.24 | 5.72 | 0.90 |
Clostridium | 1.82 | 4.15 | 6.15 | 0.27 | 2.16 | 4.00 | 3.02 | 7.29 |
Halomonas | 0.13 | 0.35 | 0.49 | 0 | 0.09 | 0.85 | 0.60 | 0.49 |
Staphylococcus | 0 | 0.09 | 0 | 2.62 | 0 | 0.50 | 0.08 | 3.33 |
Citrobacter | 2.3 | 1.64 | 10.64 | 3.73 | 1.95 | 3.58 | 4.43 | 5.39 |
Cellulomonas | 4.38 | 0.69 | 0.50 | 0.20 | 0.28 | 0.46 | 1.48 | 4.13 |
Azospirillum | 0.46 | 0.39 | 0.23 | 0.76 | 0.70 | 0.88 | 0.34 | 3.12 |
Table 2 Relative abundance of dominant bacteria at the genus level in the soil
属 | 相对丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | |
Sporolactobacillus | 1.88 | 8.96 | 8.45 | 9.67 | 1.51 | 3.71 | 3.80 | 16.1 |
Sphingobium | 4.00 | 4.88 | 4.76 | 11.08 | 24.87 | 16.87 | 16.69 | 15.15 |
Pseudomonas | 20.51 | 16.68 | 26.59 | 26.31 | 9.49 | 10.09 | 12.22 | 7.63 |
Lactococcus | 7.89 | 5.78 | 2.29 | 0.08 | 4.05 | 4.24 | 5.72 | 0.90 |
Clostridium | 1.82 | 4.15 | 6.15 | 0.27 | 2.16 | 4.00 | 3.02 | 7.29 |
Halomonas | 0.13 | 0.35 | 0.49 | 0 | 0.09 | 0.85 | 0.60 | 0.49 |
Staphylococcus | 0 | 0.09 | 0 | 2.62 | 0 | 0.50 | 0.08 | 3.33 |
Citrobacter | 2.3 | 1.64 | 10.64 | 3.73 | 1.95 | 3.58 | 4.43 | 5.39 |
Cellulomonas | 4.38 | 0.69 | 0.50 | 0.20 | 0.28 | 0.46 | 1.48 | 4.13 |
Azospirillum | 0.46 | 0.39 | 0.23 | 0.76 | 0.70 | 0.88 | 0.34 | 3.12 |
[1] | Anasonye F, Festus E, Winquist K T, et al.Bioreme-diation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation, 2015, 105: 7-12 |
[2] | 徐文杰, 张振中, 赵泉林, 等. 物化法修复火炸药污染土壤研究进展. 环境科学与技术, 2015, 38(6): 294-298 |
[3] | Tognetti V B, monti M R, Valle E M, et al. Detoxification of 2,4-dinitrotoluene by transgenic tobacco plants expressing a bacterial flavodoxin. Environment Science & Technology, 2007, 41(41): 4071-4076 |
[4] | Wen Donghui, Li Guozheng, Xing Rui, et al.2,4-DNT removal in intimately coupled photobiocatalysis: the roles of adsorption, photolysis, photocatalysis, and biotransformation. Appl Microbiol Biotechnol, 2012, 95(1): 263-272 |
[5] | Wintz H, Yoo L J, Loguinov A, et al.Gene expression profiles in fathead minnow exposed to 2,4-DNT. Toxicological Sciences, 2006, 94(1): 71-82 |
[6] | Gong P, Kuperman R G, Sunahar G I.Genotoxicity of 2,4- and 2,6-dinitrotoluene as measured by the Trades- cantia micronucleus (Trad-MCN) bioassay. Mutation Research/Genetic Toxicology & Environmental Muta-genesis, 2003, 538(1/2): 13-18 |
[7] | 谯华. TNT污染土壤的生物泥浆反应器修复机理研究[D]. 杭州: 浙江大学, 2011: 18-19 |
[8] | 巩宗强, 李培军, 台培东, 等. 污染土壤的淋洗法修复研究进展. 环境污染治理技术与设备, 2002, 3(7): 45-50 |
[9] | Cassidy D, Northup A, Hampton D.The effect of three chemical oxidants on subsequent biodegradation of 2,4 -dinitro-toluene (DNT) in batch slurry reactors. Journal of Chemical Technology and Biotechnology, 2009, 84(6): 820-826 |
[10] | Kalderis D, Hawthorne S B, Clifford A A, et al.Interaction of soil, water and TNT during degradation of TNT on contaminated soil using SB critical water. Journal of Hazardous Materials, 2008, 159(2): 329-334 |
[11] | Bier E L, Singh J, Li Zhengming, et al.Remediating hexahydro-1,3,5-tribitro-1,2,5-trazine-contaminatedwater and soil by Fenton oxidation. Environmental Toxicology and Chemistry, 1999, 18(6): 1078-1084 |
[12] | Ge H, Jensen P D, Batstone D J.Increased tempera-ture in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. Journal of Hazardous Materials, 2011, 187: 355-361 |
[13] | Clark B, Boopathy R.Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. Journal of Hazardous Materials, 2007, 143(3): 643-648 |
[14] | Anasonye F, Winquist E, Räsänen M, et al.Bioreme-diation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration & Biodegradation, 2015, 105: 7-12 |
[15] | Khan M I, Yang J, Yoo B, et al.Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. Journal of Hazar-dous Materials, 2015, 287(6): 243-251 |
[16] | Preiss A, Bauer A, Berstermann H M, et al.Advanced high-performance liquid chromatography method for highly polar nitroaromatic compounds in ground water samples from ammunition waste sites. Journal of Chromatography, 2009, 1216(25): 4968-4975 |
[17] | 辛宝平, 卢佳新, 李是坤, 等. 泥浆体系中的 TNT生物降解研究. 北京理工大学学报(自然科学版), 2008, 28(7): 638-642 |
[18] | Boopathy R, Manning J, Kulpa C F.Biotransforma-tion of explosives by anaerobic consortia in liquid culture and in soil slurry. International Biodeteriora-tion & Biodegradation, 1998, 41(1): 67-74 |
[19] | 谯华, 沈东升, 王何灵, 等. 生物泥浆反应器修复炸药污染土壤的影响因素. 科技通报, 2009, 25(2): 238-242 |
[20] | Singh S.Sensors — an effective approach for the detection of explosives. Journal of Hazardous Mater-ials, 2007, 144(s1/s2): 15-28 |
[21] | Okuda T, Alcántara-Garduño E, Suzuk M, et al.Enhancement of biodegradation of oil adsorbed on fine soils in a bioslurry reactor. Chemosphere, 2007, 68(2): 281-286 |
[22] | Muyzer G, Wall E C, Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59: 695-700 |
[23] | 肖勇, 杨朝晖, 曾光明, 等. DEEG 研究出来垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性. 环境科学, 2007, 28(5): 1095-1101 |
[24] | 王洁. 高通量测序等分子生物学技术研究研究填埋场生物反应器脱氮微生物群落变化[D]. 上海: 华东师范大学, 2014 |
[25] | Whittaker R H.Evolution and measurement of species diversity. Taxon, 1972, 21(2/3): 213-251 |
[26] | Bitetti M S D. The distribution of grooming among female primates: testing hypotheses with the Shannon-Wiener diversity index. Behaviour, 2000, 137(11): 1517-1540 |
[27] | 杨萌青, 李立明, 李川, 等. 石油污染土壤微生物群落结构与分布特性研究. 环境科学, 2013, 34(2): 789-794 |
[1] | LIU Ye, REN Yue, GAO Guanglei, DING Guodong, ZHANG Ying, ZHAO Peishan, WANG Jiayuan. Network Features of Root-Associated Fungi of Pinus Sylvestris var. Mongolica Plantations and Response to Climate Factors in the Mu Us Desert [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(3): 467-477. |
[2] | ZHANG Baichuan, ZHANG Yang, LI Zheng, LIU Yanxiao, GUO Huaicheng. Study on Coupling Simulation Method of Environmental-Economic System at Lake Watershed [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(5): 937-948. |
[3] |
LI Rui, FENG Jiguang, ZHU Biao.
Effects of Nitrogen and Phosphorus Addition on Soil Carbon and Nitrogen Mineralization in Temperate Forest and Subtropical Forest
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(4): 730-738.
|
[4] |
FU Liangchen, DING Zongju, TANG Mao, ZENG Hui, ZHU Biao.
Seasonal Dynamics of Activities, Temperature Sensitivities and Vector Characteristics of Extracellular Enzymes in Rhizosphere and Bulk Soils of Two Temperate Forests in Mt. Dongling, Beijing
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 503-516.
|
[5] | SU Zirui, ZENG Faxu, ZHENG Chengyang. Effects of Nitrogen Addition on Soil Organic Carbon and Soil Respiration in Subtropical Evergreen Broad-Leaved Forest [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 517-525. |
[6] | CHEN Xinyue, YAO Xiaodong, ZENG Wenjing, WANG Wei. Spatial Pattern and Driving Factors of Soil Microbial Biomass Carbon in Grassland in Northern Agro-Pastoral Transition Zone [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 250-260. |
[7] | HE Keyi, SHEN Yawen, FENG Jiguang, HAN Mengguang, ZHOU Yiqi, ZHU Biao. Effects of Altered Plant Detritus Input on Soil Respiration and Its Temperature Sensitivity in a Pinus sylvestris var. mongolica Plantation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 361-370. |
[8] | WANG Bei, YAN Chunhua, WANG Yue, LI Cheng, ZHANG Qingtao, QIU Guoyu. Water Budget Characteristics of Over-Irrigated Oasis in Arid Region of Northwest China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(6): 1122-1128. |
[9] | CHEN Jinfeng, YUE Yao. Impacts of Field Management Measures and Soil Erosion on Greenhouse Gases Fluxes of the Farmland [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 491-499. |
[10] | LIN Yaxuan, DANG Chenyuan, ZHONG Sining, WANG Jiawen, ZHENG Tong, NI Jinren. Community Characteristics of Dominant Archaea before and after the Danjiangkou Dam [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 509-517. |
[11] | XUE Tingting, ZHAO Yuan, CHEN Xiaoqiu, JIANG Mengdi, LIANG Boyi. Effects of Air Temperature and Soil Moisture on Common Brown-Down Date of Taraxacum mongolicum in Eastern China’s Temperate Zone [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(1): 173-183. |
[12] | PANG Yong, FENG Yajie, SUN Qichen, LAI Xiaomin, WANG Haiyuan, CHEN Xibao, LIANG Jieneng, LIU Tianxi. Simulation and Experimental Study on the Effect of Large Granular Rocks in Lunar Soil on Drilling Load [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 397-404. |
[13] | WANG Yue, YAN Chunhua, QIU Guoyu. Soil Temperature Triggers Sap Flow Onset and Offset of Pinus tabulaeformis [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 580-586. |
[14] | ZUO Yiping, ZHANG Xinyue, ZENG Hui, WANG Wei. Spatiotemporal Dynamics of Soil Extracellular Enzyme Activity and Its Influence on Potential Mineralization Rate of Soil Organic Carbon in Forests of Daxing’an Mountain Range [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(6): 1311-1324. |
[15] | ZHANG Jiangyong, WANG Wei, ZENG Hui. Fine Root Productivity and Turnover Rate Respond Nonlinearly to Increased Nitrogen Availability [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(4): 828-838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||