Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (5): 890-898.DOI: 10.13209/j.0479-8023.2017.085
• Orginal Article • Previous Articles Next Articles
Siqi TANG, Jingchen WANG, Ko Jaehac()
Online:
2017-09-20
Published:
2017-09-20
Siqi TANG, Jingchen WANG, Ko Jaehac. Pore Structure Characteristics of Sludge Biochars during Pyrolysis with Various Pyrolysis Temperatures and Holding Times[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 890-898.
汤斯奇, 王经臣, JaehacKo. 不同热解终温和保留时间下污泥生物质炭孔隙结构特征[J]. 北京大学学报自然科学版, 2017, 53(5): 890-898.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.085
工业组成/% | 灰分组成b/% | ||||||
---|---|---|---|---|---|---|---|
水分 | 78.0 | Al2O3 | 11.3 | K2O | 0.8 | CuO | 0.01 |
灰分b | 33.7 | SiO2 | 9.6 | TiO2 | 0.2 | Cr2O3 | 0.01 |
挥发分b | 55.8 | P2O5 | 5.3 | SO3 | 0.2 | PbO | 0.004 |
固定碳b,c | 10.5 | Fe2O3 | 2.6 | ZnO | 0.2 | ||
CaO | 1.9 | MnO | 0.03 |
Table 1 Approximate analysis and ash composition analysis for sludge sample used
工业组成/% | 灰分组成b/% | ||||||
---|---|---|---|---|---|---|---|
水分 | 78.0 | Al2O3 | 11.3 | K2O | 0.8 | CuO | 0.01 |
灰分b | 33.7 | SiO2 | 9.6 | TiO2 | 0.2 | Cr2O3 | 0.01 |
挥发分b | 55.8 | P2O5 | 5.3 | SO3 | 0.2 | PbO | 0.004 |
固定碳b,c | 10.5 | Fe2O3 | 2.6 | ZnO | 0.2 | ||
CaO | 1.9 | MnO | 0.03 |
[1] | 中华人民共和国住房与城乡建设部. 中国城市建设统计年鉴. 2014 |
[2] | Fytili D, Zabaniotou A.Utilization of sewage sludge in EU application of old and new methods — a review. Renewable and Sustainable Energy Reviews, 2008, 12(1): 116-140 |
[3] | Yang G, Zhang G, Wang H.Current state of sludge production, management, treatment and disposal in China. Water Research, 2015, 78: 60-73 |
[4] | Werther J, Ogada T.Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25(1): 55-116 |
[5] | Hadi P, Xu M, Ning C, et al.A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 2015, 260: 895-906 |
[6] | Bridle T R, Pritchard D.Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 2004, 50(9): 169-175 |
[7] | Fonts I, Gea G, Azuara M, et al.Sewage sludge pyrolysis for liquid production: a review. Renewable & Sustainable Energy Reviews, 2012, 16(5): 2781-2805 |
[8] | Smith K M, Fowler G D, Pullket S, et al.Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Research, 2009, 43(10): 2569-2594 |
[9] | Van Zwieten L, Kimber S, Morris S, et al.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2009, 327(1): 235-246 |
[10] | Lehmann J, Rillig MC, Thies J, et al.Biochar effects on soil biota — a review. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836 |
[11] | Méndez A, Gómez A, Paz-Ferreiro J, et al.Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 2012, 89(11): 1354-1359 |
[12] | Méndez A, Tarquis A M, Saa-Requejo A, et al.Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere, 2013, 93(4): 668-676 |
[13] | 陈汉平, 邵敬爱, 杨海平, 等. 一种生物污泥热解半焦孔隙结构特性. 中国电机工程学报, 2008, 28(26): 82-86 |
[14] | Simons G A.Coal pyrolysis I. Pore evolution theory. Combustion and Flame, 1983, 53: 83-92 |
[15] | Simons G A.Coal pyrolysis Ⅱ. Species transport theory. Combustion and Flame, 1984, 55(2): 181-194 |
[16] | Agrafioti E, Bouras G, Kalderis D, et al.Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78 |
[17] | 王贤华, 鞠付栋, 陈汉平, 等.污泥热解过程中焦的表面孔隙结构分形生长. 燃料化学学报, 2010, 38(3): 374-379 |
[18] | 张佳丽, 谌伦建, 张如意.煤焦分形维数及其对比热容的影响研究. 燃料化学学报, 2005, 33(3): 359-362 |
[19] | Raveendran K, Ganesh A.Adsorption characteristics and pore-development of biomass-pyrolysis char. Fuel, 1998, 77(7): 769-781 |
[20] | Lowell S, Shields J E, Thomas M A, et al. Characterization of porous solids and powders: surface area, pore size and densityNew York: Springer Science & Business Media, 2004 |
[21] | Sahouli B, Blacher S, Brouers F.Fractal surface analysis by using nitrogen adsorption data: the case of the capillary condensation regime. Langmuir, 1996, 12(11): 2872-2874 |
[22] | Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603-619 |
[23] | 陈萍, 唐修义.低温氮吸附法与煤中微孔隙特征的研究. 煤炭学报, 2001, 26(5): 552-556 |
[24] | Zielińska A, Oleszczuk P, Charmas B, et al.Effect of sewage sludge properties on the biochar characteristic. Journal of Analytical and Applied Pyrolysis, 2015, 112: 201-213 |
[25] | Xu X, Cao X, Zhao L, et al.Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere, 2014, 111: 296-303 |
[26] | Barneto A G, Carmona J A, Alfonso J E M, et al. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 108-114 |
[27] | Thipkhunthod P, Meeyoo V, Rangsunvigit P, et al.Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. Journal of Analytical and Applied Pyrolysis, 2007, 79: 78-85 |
[28] | Lu G Q, Low J C F, Liu C Y, et al. Surface area development of sewage sludge during pyrolysis. Fuel, 1995, 74(3): 344-348 |
[29] | Karayildirim T, Yanik J, Yuksel M, et al.Characterisation of products from pyrolysis of waste sludges. Fuel, 2006, 85: 1498-1508 |
[30] | Fonts I, Azuara M, Gea G, et al.Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, 2009, 85: 184-191 |
[1] |
PENG Mou, LI Jianghai, YANG Bo.
Pore Structure Characteristics and Influencing Factors of Deep Sandstone Reservoirs: A Case Study of Guaizihu Depression in Yin’e Basin
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60(2): 249-264.
|
[2] | PENG Ke, LIU Yuexi, CHEN Liang, LU Xinpei. Study on Nitrogen Fixation Characteristics of Glow Plasma in Series under Fixed Magnetic Field [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(6): 915-922. |
[3] | ZHANG Chi, GUAN Ping, ZHANG Jihua, LIANG Xiaowei, DING Xiaonan, YOU Yuan. A Review of the Progress on Fractal Theory to Characterize the Pore Structure of Unconventional Oil and Gas Reservoirs [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(5): 897-908. |
[4] | ZHOU Rong, WU Chaodong, ZHANG Yanan. Outpainting Reconstruction of Sandstone Thin-Section Image Based on Generative Adversarial Network [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(2): 231-241. |
[5] |
FU Liangchen, DING Zongju, TANG Mao, ZENG Hui, ZHU Biao.
Seasonal Dynamics of Activities, Temperature Sensitivities and Vector Characteristics of Extracellular Enzymes in Rhizosphere and Bulk Soils of Two Temperate Forests in Mt. Dongling, Beijing
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 503-516.
|
[6] |
DING Junjie, QIN Longjun, TAN Shenglin, YU Xiaohui, ZOU Zhendong, QIU Guoyu, YAN Chunhua.
Study on Characteristics of Transpiration, Cooling Effect and Carbon-Reduction Effect of Ficus concinna, a Native Tree Species in Subtropical Cities
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 537-545.
|
[7] |
WANG Enze, WU Zhongbao, SONG Yanchen, SHI Kaibo, LIU Hangyu, LIU Bo.
Pore Structure and Diagenetic Evolution Features of Member-7 of Yanchang Formation in Qingcheng Area, Ordos Basin, NW China
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 249-260.
|
[8] | BAI Qianqian, LIANG Enhang, WANG Ting, WANG Jiawen. Variation Characteristics of Surface Water Temperature and Their Response to Climate Change in Dongting Lake [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 345-353. |
[9] | GAO Huihui, CHEN Zhi, SHI Zhe, YAN Chunhua, WANG Bei, ZOU Zhendong, QIU Guoyu. Experimental Study of the Influence of Water Temperature on Pan Evaporation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 147-156. |
[10] | WEN Haiyan, YAN Chunhua, GAO Huihui, CHEN Zhi, HUANG Wanbin, QIU Guoyu. Study on Characteristics of Three-Dimensional Cool Island Effect and Evapotranspiration Contribution of Individual Urban Tree [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(5): 975-982. |
[11] | YU Xiangqian, LIU Si, XIAO Chijie, QU Yanan, ZONG Qiugang, CHEN Hongfei, ZOU Hong, SHI Weihong, WANG Yongfu, CHEN Ao, SONG Siyu, GAO Shuang, SHAO Sipei. Study on Temperature Drift of Offset for Full-Bridge Magneto Resistive Sensors [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3): 401-406. |
[12] | HE Keyi, SHEN Yawen, FENG Jiguang, HAN Mengguang, ZHOU Yiqi, ZHU Biao. Effects of Altered Plant Detritus Input on Soil Respiration and Its Temperature Sensitivity in a Pinus sylvestris var. mongolica Plantation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 361-370. |
[13] | ZHAO Wenli, XIONG Yujiu, QIU Guoyu, YAN Chunhua, ZOU Zhendong, QIN Longjun. Impact of Model Structure and Parameterization Differences on Evapotranspiration Estimation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(1): 162-172. |
[14] | WANG Yali, WANG Yufei, LI Jian, PENG Jiajia, CAO Shuai, YAN Long. Preparation and Pyrolysis Kinetics of Phenolic Resins of Main Phenols in Semi-coking Wastewater [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(6): 975-982. |
[15] | AN Jie, FU Bo, LI Wei, PENG Siyuan, LI Bengang. Future Prediction of Typical Extreme Climatic Indices and Population Exposure to High Temperature in East Asia [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(5): 884-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||