Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2020, Vol. 56 ›› Issue (3): 491-499.DOI: 10.13209/j.0479-8023.2020.023

Previous Articles     Next Articles

Impacts of Field Management Measures and Soil Erosion on Greenhouse Gases Fluxes of the Farmland

CHEN Jinfeng1, YUE Yao2,3,†   

  1. 1. School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055 2. School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072 3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072
  • Received:2019-04-13 Revised:2019-05-17 Online:2020-05-20 Published:2020-05-20
  • Contact: YUE Yao, E-mail: yueyao(at)whu.edu.cn

田间管理措施及土壤侵蚀对农田温室气体通量的影响

陈劲丰1, 岳遥2,3,†   

  1. 1. 北京大学深圳研究生院环境与能源学院, 深圳 518055 2. 武汉大学水利水电学院, 武汉 430072 3. 水资源与水电工程国家重点实验室, 武汉 430072
  • 通讯作者: 岳遥, E-mail: yueyao(at)whu.edu.cn
  • 基金资助:
    国家自然科学基金(41601275)资助

Abstract:

In order to explore the impact of field management measures and soil erosion on greenhouse gases (GHGs) fluxes, the Yucheng Experimental Station of the Chinese Academy of Sciences was selected as the research area. By collecting data of meteorology, soil and field management measures, we estimated CO2 and N2O fluxes under different intensities of nitrogen application, fertilization depths, and soil erosion rate, using DNDC model. Compared with observed data, DNDC model performed well in simulating CO2 and N2O fluxes. As the intensity of nitrogen application increased, the N2O flux also increased linearly from 1.06 mg/(m2·d) to 2.88 mg/(m2·d). The NEE also gradually increased from 1.38 g/(m2·d) to 2.07 g/(m2·d), but the increasing trend gradually slowed down. With the fertilization depth changing from 5 cm to 20 cm, the N2O flux decreased from 2.88 mg/(m2·d) to 0.68 mg/(m2·d). Moreover, when the fertilization depth increased from 0.2 cm to 20 cm, the NEE gradually increased from 1.79 g/(m2·d) to 2.32 g/(m2·d), but the increasing trend also slowed down. Under the impact of soil erosion, the NEE and the N2O flux increased by 11% and 4%, respectively. This study helps to complete the national inventories of GHGs emission, and provides basis for the policy-making of GHGs management in farmland.

Key words: DNDC model, GHGs, soil erosion, field management measures, farmland

摘要:

针不同田间管理措施及土壤侵蚀对农田温室气体通量的影响, 应用反硝化分解模型(DNDC 模型), 选取中国科学院禹城综合试验站作为研究区域, 结合该区域的气象、土壤和田间管理措施等数据, 模拟在不同施氮量、施肥深度以及土壤侵蚀条件下的CO2和N2O气体通量。结果表明: DNDC模型对农田CO2和N2O气体通量的模拟效果较好; 施氮量从实际施氮量的0.5 倍升高到1.5 倍的过程中, N2O排放通量从1.06 mg/(m2·d)线性地增加至2.88 mg/(m2·d), C的净固定量亦从1.38 g/(m2·d)逐渐增加至2.07 g/(m2·d), 但增加趋势逐渐变缓; 在施肥深度从5 cm变化到20 cm的过程中, N2O排放通量从2.88 mg/(m2·d)降低至0.68 mg/(m2·d); 当施肥深度从0.2 cm升高到20 cm时, C的净固定量从1.79 g/(m2·d)逐渐升高至2.32 g/(m2·d), 但增加趋势逐渐变缓; 在土壤侵蚀的影响下, C的净固定量和N2O的排放量分别升高11%和4%。研究结果可为国家温室气体通量清单的编制及相关管理政策的制定提供参考依据。

关键词: DNDC模型, 温室气体, 土壤侵蚀, 田间管理措施, 农田