Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2025, Vol. 61 ›› Issue (3): 487-500.DOI: 10.13209/j.0479-8023.2025.018

Previous Articles     Next Articles

Micro-earthquake Recording Denoising Method Based on Convolutional Neural and Bidirectional Long Short-term Memory Network

WANG Tairan1, BAO Yifei2,†   

  1. 1. Electronic Information Engineering Program, International School, Beijing University of Posts and Telecommunications, Beijing 100876 2. Department of Physics, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
  • Received:2025-02-01 Revised:2025-02-21 Online:2025-05-20 Published:2025-05-20
  • Contact: BAO Yifei, E-mail: byffly(at)bupt.edu.cn

基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法

王泰然1, 鲍逸非2,†   

  1. 1. 北京邮电大学国际学院电子信息工程专业, 北京 100876 2. 北京邮电大学理学院物理系, 北京 100876
  • 通讯作者: 鲍逸非, E-mail: byffly(at)bupt.edu.cn
  • 基金资助:
    国家自然科学基金(42304110)资助

Abstract:

This paper proposes a deep learning-based time-domain denoising method for micro-earthquake recordings by combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BiLSTM). Based on micro-earthquake observation data from Zigong and Neijiang areas of Sichuan, the structural model and focal mechanism of the region are used to generate a synthetic noise-free dataset by numerical modeling, which is then combined with observed micro-earthquake noise to create a synthetic noisy dataset. A high-performance and stable denoising model is obtained through training of the deep learning network, demonstrating excellent generalization performance on the validation set. Compared with traditional methods, the proposed method demonstrates excellent denoising performance and better preserves the detailed characteristics of both the waveform and the spectrum of the noise-free signal. Application to micro-earthquake observation data of Zigong and Neijiang areas demonstrates the model’s strong denoising performance and generalization ability on real-world data.

Key words: micro-earthquake, denoising, CNN, BiLSTM, deep learning

摘要:

提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型, 用于时间域波形去噪。选取四川省自贡和内江地区的微震观测数据, 基于该地区的构造模型和震源机制进行数值模拟, 生成无噪声数据集, 并叠加观测微震噪声, 构建模拟含噪声数据集。通过深度学习网络的训练, 获得性能稳定且泛化能力强的去噪模型, 该模型在验证集上也表现优异。与传统去噪方法相比, 所提方法的去噪效果显著提升, 能够更好地保留信号的细节特征和频谱特征。将该模型应用于自贡和内江地区的实际微震观测数据, 结果表明能有效地去除实测数据中的噪声。

关键词: 微小地震, 噪声去除, 卷积神经网络(CNN), 双向长短期记忆网络(BiLSTM), 深度学习