Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2024, Vol. 60 ›› Issue (5): 883-892.DOI: 10.13209/j.0479-8023.2024.067

Previous Articles     Next Articles

Synthesis of Remote Sensing Optical Images with Ship Targets Based on Generative Adversarial Networks

JI Rui1, MA Lei2, ZHANG Jing2, WANG Weihong2, GUO Zhizhou1, WAN Xianci1, XIAO Lei1,3, WAN Wei1,†
  

  1. 1. School of Earth and Space Sciences, Peking University, Beijing 100871 2. China Academic of Electronics and Information Technology, Beijing 100041 3. City Institute, Dalian University of Technology, Dalian 116630
  • Received:2023-11-08 Revised:2024-01-16 Online:2024-09-20 Published:2024-09-12
  • Contact: WAN Wei, E-mail: w.wan(at)pku.edu.cn

基于生成对抗网络的遥感光学影像舰船样本仿真

冀锐1, 马磊2, 张靖2, 王卫红2, 郭祉辀1,  万献慈1, 肖蕾1,3, 万玮1,†
  

  1. 1. 北京大学地球与空间科学学院, 北京 100871 2. 中国电子科技集团公司电子科学研究院, 北京 100041 3. 大连理工大学城市学院, 大连 116630
  • 通讯作者: 万玮, E-mail: w.wan(at)pku.edu.cn

Abstract:

Due to real-world constraints, the quantity of ship datasets derived from remote sensing data is substantially limited and can’t fulfill the extensive sample demands required for training deep learning algorithms. According to this problem, a high-quality synthesizing method for three-band optical high-resolution remote sensing images containing ship targets is introduced, which utilizes 3D models and generative adversarial networks with style transfer capabilities. Based on the constructed dataset, synthetic samples are generated and evaluated. The experiments indicate that the approach can synthesize images visually close to real images. Incorporating these synthetic samples into the training process of detection models results in an increase of 2.6% in mAP for Faster R-CNN and 2.3% for YOLOv5.

Key words:

摘要:

基于遥感数据获取的真实舰船数据集数量非常有限, 难以满足深度学习算法训练对样本数量的需求。针对此问题, 利用三维模型和能够进行风格迁移的生成对抗网络, 提出一种高质量的包含舰船目标的三波段光学高分辨率遥感图像仿真方法。基于构建的数据集, 进行仿真样本的生成及评估。研究结果表明, 该方法能够合成在视觉上接近真实影像的图像, 通过加入合成样本对目标检测模型进行训练, 可以使Faster-RCNN和YOLOv5的全类平均正确率mAP分别提升2.6%和2.3%。

关键词: