北京大学学报自然科学版 ›› 2020, Vol. 56 ›› Issue (5): 875-883.DOI: 10.13209/j.0479-8023.2020.054

上一篇    下一篇

基于热力图数据的轨道交通站点服务区活力测度研究——以深圳市地铁为例

周雨霏1, 杨家文1,†, 周江评2, 周佩玲3, 刘海涛4   

  1. 1. 北京大学深圳研究生院城市规划与设计学院, 深圳 518055 2. 香港大学建筑学院, 香港 3. 哈尔滨工业大学(深圳)建筑学院, 深圳 518055 4. 天津市城市规划设计研究院, 天津 300000
  • 收稿日期:2019-08-15 修回日期:2020-05-22 出版日期:2020-09-20 发布日期:2020-09-20
  • 通讯作者: 杨家文, E-mail: yangjw(at)pkusz.edu.cn
  • 基金资助:
    国家自然科学基金(51678004)资助

Evaluating Vitality of Metro Station Service Area with Heat Map: A Case Study on Shenzhen Subway

ZHOU Yufei1, YANG Jiawen1,†, ZHOU Jiangping2, ZHOU Peiling3, LIU Haitao4   

  1. 1. School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055 2. Faculty of Architecture, The University of Hong Kong, Hong Kong 3. School of Architecture, Harbin Institute of Technology (Shenzhen), Shenzhen 518055 4. Tianjin Urban Planning and Design Institute, Tianjin 300000
  • Received:2019-08-15 Revised:2020-05-22 Online:2020-09-20 Published:2020-09-20
  • Contact: YANG Jiawen, E-mail: yangjw(at)pkusz.edu.cn

摘要:

以深圳市地铁为案例, 利用百度热力图, 通过热力平均值和热力离散系数构建轨道站点服务区活力测度体系。结果表明: 1) 深圳市人口聚集具有站点导向, 占深圳市总面积15%的轨道服务区在7—23时集聚全市38%~50%的人口, 呈现夜间少、日间多的人口聚集特征; 2) 测度体系将深圳市166个轨道站点服务区划分为低平衡成熟型、高平衡成熟型、高平衡孕育型和低平衡孕育型, 活力表现与建成环境有关, 成熟型服务区建设强度更高, 低平衡型服务区用地不均衡的情况更严重, 拥有规模性城中村的服务区更易表现出高平衡型特征。基于热力图数据的活力测度能帮助不同类型的轨道站点服务区采取相应的规划策略, 产生更理想的公共交通导向式土地开发(TOD)效益。

关键词: 轨道站点服务区, 大数据, 城市活力, 深圳市

Abstract:

Taking Shenzhen subway as an example, we use Baidu Heat Map to construct a system to evaluate vitality of station service area through heat average and heat coefficient of variation. Station service area, which accounts for 15% of Shenzhen municipal area, has 38%~50% of the city population from 7:00 to 23:00, less population gather at night and more during daytime. The 166 service areas can be classified into four groups: lowbalance mature areas, low-balance developing areas, high-balance mature areas and high-balance developing areas. Their vitality characteristics are quite relevant to built environment. Mature areas have higher development density. High-balance areas have higher land use mixture. Station service areas with large-scale urban village are more likely to show high-balance. The evaluation can be beneficial to adopting available strategies for different types of station service area, and shed light on trancit oriented development (TOD) planning and design.

Key words: metro station service area, big data, urban vitality, Shenzhen