Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (5): 948-956.DOI: 10.13209/j.0479-8023.2017.113
• Orginal Article • Previous Articles Next Articles
Qingsong JIANG1, Zhongyao LIANG1, Lei ZHAO2, Yuzhao LI1, Sifeng WU1, Yong LIU1()
Received:
2016-05-12
Revised:
2016-09-04
Online:
2017-09-20
Published:
2017-09-20
蒋青松1, 梁中耀1, 赵磊2, 李玉照1, 吴思枫1, 刘永1()
基金资助:
Qingsong JIANG, Zhongyao LIANG, Lei ZHAO, Yuzhao LI, Sifeng WU, Yong LIU. Integrated PCA-BN Approach for Identifying the Water Quality Response Patterns for Lakes in Yunnan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 948-956.
蒋青松, 梁中耀, 赵磊, 李玉照, 吴思枫, 刘永. 云南高原湖泊群的统计学聚类识别及水质响应模式研究[J]. 北京大学学报自然科学版, 2017, 53(5): 948-956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.113
统计量 | WT/ºC | DO/(mg · L-1) | SD/m | TN/(mg · L-1) | TP/(mg · L-1) | Chl a/(mg · L-1) | CODMn/(mg · L-1) |
---|---|---|---|---|---|---|---|
平均值 | 21.39 | 7.155 | 2.569 | 0.544 | 0.039 | 0.008 | 4.626 |
标准差 | 3.61 | 2.020 | 2.726 | 0.532 | 0.042 | 0.009 | 2.668 |
变异系数 | 0.17 | 0.282 | 1.061 | 0.978 | 1.070 | 1.147 | 0.577 |
最小值 | 14.57 | 2.033 | 0.367 | 0.050 | 0.005 | 0.0004 | 0.900 |
最大值 | 28.67 | 13.400 | 11.933 | 1.998 | 0.167 | 0.035 | 11.600 |
Table 1 Descriptive statistical analysis of lakes
统计量 | WT/ºC | DO/(mg · L-1) | SD/m | TN/(mg · L-1) | TP/(mg · L-1) | Chl a/(mg · L-1) | CODMn/(mg · L-1) |
---|---|---|---|---|---|---|---|
平均值 | 21.39 | 7.155 | 2.569 | 0.544 | 0.039 | 0.008 | 4.626 |
标准差 | 3.61 | 2.020 | 2.726 | 0.532 | 0.042 | 0.009 | 2.668 |
变异系数 | 0.17 | 0.282 | 1.061 | 0.978 | 1.070 | 1.147 | 0.577 |
最小值 | 14.57 | 2.033 | 0.367 | 0.050 | 0.005 | 0.0004 | 0.900 |
最大值 | 28.67 | 13.400 | 11.933 | 1.998 | 0.167 | 0.035 | 11.600 |
主成分载荷表 | 主成分1 | 主成分2 |
---|---|---|
DO | 0.915 | |
SD | 0.438 | |
TN | -0.438 | |
TP | -0.454 | -0.237 |
Chl a | -0.431 | 0.225 |
CODMn | -0.464 | -0.207 |
方差贡献率 | 0.587 | 0.181 |
累积方差贡献率 | 0.587 | 0.768 |
Table 2 The loading matrix and proportion of principal components
主成分载荷表 | 主成分1 | 主成分2 |
---|---|---|
DO | 0.915 | |
SD | 0.438 | |
TN | -0.438 | |
TP | -0.454 | -0.237 |
Chl a | -0.431 | 0.225 |
CODMn | -0.464 | -0.207 |
方差贡献率 | 0.587 | 0.181 |
累积方差贡献率 | 0.587 | 0.768 |
类别 | R | 特征 | 湖泊聚类结果 |
---|---|---|---|
一 | >1 | 人为干扰影响较大 | 滇池、阳宗海、洱海、抚仙湖、泸沽湖、摆龙湖、三角海、大屯海、海西海、普者黑、 清水海、茈碧湖、月湖、草海湿地、长桥海 |
二 | <1 | 人为干扰影响较小 | 碧塔海、海峰湿地、剑湖、拉市海、纳帕海、青海湖、蜀都湖、天池、西湖、长湖 |
Table 3 Result of clustering of 26 lakes in Yunnan Province
类别 | R | 特征 | 湖泊聚类结果 |
---|---|---|---|
一 | >1 | 人为干扰影响较大 | 滇池、阳宗海、洱海、抚仙湖、泸沽湖、摆龙湖、三角海、大屯海、海西海、普者黑、 清水海、茈碧湖、月湖、草海湿地、长桥海 |
二 | <1 | 人为干扰影响较小 | 碧塔海、海峰湿地、剑湖、拉市海、纳帕海、青海湖、蜀都湖、天池、西湖、长湖 |
[1] | 孟伟, 苏一兵, 郑丙辉. 中国流域水污染现状与控制策略的探讨. 中国水利水电科学研究院学报, 2004, 2(4): 242-246 |
[2] | Conley D J, Paerl H W, Howarth R W, et al.Controlling eutrophication: nitrogen and phosphorus. Science, 2009, 323: 1014-1015 |
[3] | Baresel C, Destouni G.Uncertainty-accounting envir-onmental policy and management of water systems. Environmental Science & Technology, 2007, 41(10): 3653-3659 |
[4] | 刘永, 邹锐, 郭怀成, 等. 智能流域管理研究.北京: 科学出版社, 2012 |
[5] | Swaney D P, Scavia D, Howarth R W, et al.Estuarine classification and response to nitrogen loading: insights from simple ecological models. Estuarine, Coastal and Shelf Science, 2008, 77(2): 253-263 |
[6] | Trebitzey A S, Brazner J C, Cotter A M, et al.Water quality in Great Lakes coastal wetlands: basin-wide patterns and responses to an anthropogenic distur-bance gradient. Journal of Great Lakes Research, 2007, 33(1): 67-85 |
[7] | 吴丰昌, 孟伟, 宋永会, 等. 中国湖泊水环境基准的研究进展. 环境科学学报, 2008, 28(12): 2385-2393 |
[8] | Liu Y, Wang Y L, Sheng H, et al.Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: a water quality modeling based statistical analysis approach. Science of the Total Environment, 2013, 468(7): 219-227 |
[9] | Zou R, Zhang X L, Liu Y, et al.Uncertainty-based analysis on water quality response to water diversions for Lake Chenghai: a multiple-pattern inverse model-ing approach. Journal of Hydrology, 2014, 514: 1-14 |
[10] | 张军莉, 赵磊, 聂菊芬. 云南高原小湖泊水质空间分布特征研究. 环境科学导刊, 2015(2): 26-34 |
[11] | Omernik J M.Map Supplement: ecoregions of the Conterminous United States. Annals of the Associa-tion of American Geographers, 1987, 77(1): 118-125 |
[12] | Freeman A M, Lamon Ⅲ E C, Stow C A. Nutrient criteria for lakes, ponds, and reservoirs: a Bayesian TREED model approach. Ecological Modelling, 2009, 220(5): 630-639 |
[13] | Lamon Ⅲ E C, Malve O, Pietiläinen O P. Lake classification to enhance prediction of eutrophication endpoints in Finnish lakes. Environmental Modelling & Software, 2008, 23(7): 938-947 |
[14] | Hemsley F B, Wright J F, Sutcliffe D W, et al.Classification of the biological quality of rivers in England and Wales // Assessing the biological quality of fresh waters: RIVPACS and other techniques. Proceedings of an International Workshop held in Oxford, UK, on 16-18 September 1997. Freshwater Biological Association (FBA), 2000: 55-69 |
[15] | Heiskary S A, Wilson C B, Larsen D P.Analysis of regional patterns in lake water quality: using ecore-gions for lake management in Minnesota. Lake & Reservoir Management, 1987, 3(1): 337-344 |
[16] | Lewis W M.A revised classification of lakes based on mixing. Canadian Journal of Fisheries & Aquatic Sciences, 2011, 40(10): 1779-1787 |
[17] | Naumann E.Några synpunkter angående limnoplank-tons ökologi med särskild hänsyn till fytoplankton. Svensk Botanisk Tidskrift, 1919, 13(6): 129-163 |
[18] | Kalff J.Limnology: inland water ecosystems. New Jersey: Prentice Hall, 2002 |
[19] | Akbar T A, Hassan Q K, Achari G.A methodology for clustering lakes in Alberta on the basis of water quality parameters. Clean-Soilair Water, 2011, 39(10): 916-924 |
[20] | Abdi H, Williams L J.Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statis- tics, 2010, 2(4): 433-459 |
[21] | Ouyang Y, Nkedi-Kizza P, Wu Q T, et al.Assessment of seasonal variations in surface water quality. Water Research, 2006, 40(20): 3800-3810 |
[22] | 曹金玲, 席北斗, 许其功, 等. 地理气候及湖盆形态对我国湖泊营养状态的影响. 环境科学学报, 2012, 32(6): 1512-1519 |
[23] | 刘总堂, 李春海, 章钢娅. 运用主成分分析法研究云南湖库水体中重金属分布. 环境科学研究, 2010, 23(4): 459-466 |
[24] | Yang Y H, Zhou F, Guo H C, et al.Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring & Assessment, 2010, 170: 407-416 |
[25] | Olsen R L, Chappell R W, Loftis J C.Water quality sample collection, data treatment and results presen-tation for principal components analysis — literature review and Illinois River watershed case study. Water Research, 2012, 46(9): 3110-3122 |
[26] | Rigosi A, Hanson P, Hamilton D P, et al.Determining the probability of cyanobacterial blooms: the appli-cation of Bayesian networks in multiple lake systems. Ecological Applications, 2015, 25(1): 186-199 |
[27] | Loiselle S A, Azza N, Cózar A, et al.Variability in factors causing light attenuation in Lake Victoria. Freshwater Biology, 2008, 53(3): 535-545 |
[28] | Astel A, Tsakovski S, Barbieri P, et al.Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Research, 2007, 41(19): 4566-4578 |
[29] | Tsamardinos I, Brown L E, Aliferis C F.The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 2006, 65(1): 31-78 |
[30] | Nielsen T D, Jensen F V.Bayesian networks and decision graphs. New York: Springer Science & Business Media, 2007 |
[31] | Hart B T, Pollino C A, Hart B T, et al.Bayesian modelling for risk-based environmental water alloca-tion. National Water Commission, 2009 |
[32] | Xu H, Mccarthy M J, Zhu G, et al.Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research, 2011, 45(5): 1973-1983 |
[33] | Lee H S, Lee J H W. Continuous monitoring of short term dissolved oxygen and algal dynamics. Water Research, 1995, 29(29): 2789-2796 |
[34] | Gabriels W, Goethals P L M, Dedecker A P, et al. analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks. Aquatic Ecology, 2007, 41(3): 427-441 |
[35] | 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准. 中国环境监测, 2002, 18(5): 47-49 |
[36] | Ji Z G.Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. Wiley-Interscience, 2008 |
[37] | McQueen D J, Lean D R S. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Canadian Journal of Fisheries and aquatic Sciences, 1987, 44(3): 598-604 |
[38] | Kling G W.Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, Westafrica. Limnology & Oceanography, 1988, 33(1): 27-40 |
[39] | Gorham E, Boyce F M.Influence of lake surface area and depth upon thermal stratification and the Depth of the summer thermocline. Journal of Great Lakes Research, 1989, 15(2): 233-245 |
[40] | 孙玉莲, 赵永涛, 曹伟超, 等. 山区人口分布与环境要素关系的定量分析. 安徽农业科学, 2011, 39(19): 11705-11707 |
[41] | 宋长青, 杨桂山, 冷疏影. 湖泊及流域科学研究进展与展望. 湖泊科学, 2002, 14(4): 3-14 |
[42] | Liu Wenzhi, Zhang Quanfa, Liu Guihua.Effects of watershed land use and lake morphometry on the trophic state of Chinese lakes: implications for eutrophication control. Clean —Soil, Air, Water, 2011, 39(1): 35-42 |
[43] | 秦伯强, 高光, 朱广伟, 等. 湖泊富营养化及其生态系统响应. 科学通报, 2013(10): 855-864 |
[44] | Zang C, Huang S, Wu M, et al.Comparison of rela-tionships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air,& Soil Pollution, 2011, 219: 157-174 |
[45] | 李蒙, 谢国清, 戴丛蕊, 等. 滇池外海水体叶绿素 a 与水质因子关系研究. 云南地理环境研究, 2009, 21(2): 102-106 |
[46] | Liu W, Li S, Bu H, et al.Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors. Environmental Science and Pollution Research, 2012, 19(3): 858-870 |
[47] | Liu W, Zhang Q, Liu G.Lake eutrophication asso-ciated with geographic location, lake morphology and climate in China. Hydrobiologia, 2010, 644(1): 289-299 |
[1] | SU Han, ZOU Rui, LIANG Zhongyao, YE Rui, WANG Zhiyun, LIU Yong. Nonlinearity Strength Indicators for Numerical Simulation Based Load Reduction-Water Quality Responses [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(4): 695-703. |
[2] | ZHANG Yang, XIAN Huiting, ZHAO Zhijie. Real-Time River Water Quality Prediction Model Based on Spatial Correlation and Neural Network Model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 337-344. |
[3] | ZHAO Mengyao, LIANG Enhang, CHEN Ying, HE Yifan, WANG Jiawen. Diatom Community Structure and Water Quality Evaluation in the Maqu-Linhe Section of the Yellow River [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 169-176. |
[4] | HU Mengchen, ZHU Tao, JIANG Qingsong, ZOU Rui, WU Zhen, ZHANG Xiaoling, YE Rui, LIU Yong. Simulation Study on Nitrogen and Phosphorus Reycling Response of Changing Dissolved Oxygen Concentration in Lake Dianchi [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3): 481-488. |
[5] | CHENG Peng, LI Mingyuan, LOU Kai, QIN Huapeng. Impact of Overflow Pollution on Water Quality in Shenzhen Bay [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(1): 132-142. |
[6] | SHEN Hongyi, XU Fangfang, WANG Xinmin. Research on Cleaning and Repairing Methods of Civil Building Data on Resources Saving and Environment Protection [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(5): 785-795. |
[7] | ZENG Jianrong, ZHANG Yangsen, WANG Siyuan, HUANG Gaijuan, CUI Jia, MA Huan. Research on Expert Disambiguation of Same Name Based on Multi-feature Fusion [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 607-613. |
[8] | BAI Hui, CHEN Yan, WANG Dong, WU Shunze, GAO Wei, GUO Huaicheng. Study on the Classification of Response Relationship between Total Pollutant Emission Reduction and Water Quality Improvement in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 765-771. |
[9] | ZHAI Shang, YU Zhichao, TAN Yuyang, HUANG Fangfei, LIU Ling, HU Tianyue, HE Chuan. Microseismic Monitoring Events Classification Based on Waveform Clustering Analysis and Application [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 406-416. |
[10] | JIANG Yiran, BAO Tiezhao, NING Jieyuan, ZHANG Xianbing. Spectral Characteristics of High-Speed Rail Seismic Signal under Viaduct [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(5): 829-838. |
[11] | JIANG Yiran, LIANG Xuan, NING Jieyuan, BAO Tiezhao, ZHANG Xianbing. 4D Ground Frequency Map: Concept and Application [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(5): 850-858. |
[12] | ZOU Rui, SU Han, YU Yanhong, WANG Junsong, YE Rui, LIU Yong. Object-Oriented Precise Decision-Making (OOPD) for Water Quality Improvementin Lake Yilong [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(2): 426-434. |
[13] | NIU Zhiyuan, SHEN Xiaoxue, CHAI Minwei, XU Hualin, LI Ruili, QIU Guoyu. Characteristics of Water Quality Changes in the Futian Mangrove National Natural Reserve [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 137-145. |
[14] | Yile TAO, Chenfeng ZHANG, Lin XU, Donghui WEN. Temporal and Spatial Variation of the Water Quality and the Sediment Bacterial Community in Weiming Lake, Peking University [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 1150-1160. |
[15] | Lilin ZHANG, Maoxi LI, Wenyan XIAO, Jianyi WAN, Mingwen WANG. Improve Automatic Evaluation of Machine Translation Using Specific-Domain Paraphrase [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(2): 230-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||