Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (4): 617-626.DOI: 10.13209/j.0479-8023.2017.012
• Orginal Article • Previous Articles Next Articles
Chongwei ZHENG1,2,3, Yue GAO4, Xuan CHEN1
Received:
2016-04-05
Revised:
2016-06-05
Online:
2017-07-20
Published:
2017-07-20
基金资助:
CLC Number:
Chongwei ZHENG, Yue GAO, Xuan CHEN. Climatic Long Term Trend and Prediction of the Wind Energy Resource in the Gwadar Port[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 617-626.
郑崇伟, 高悦, 陈璇. 巴基斯坦瓜达尔港风能资源的历史变化趋势及预测[J]. 北京大学学报自然科学版, 2017, 53(4): 617-626.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.012
风能要素 | 1月 | 7月 | 逐年 | |||
---|---|---|---|---|---|---|
原始值 | 滑动平均 | 原始值 | 滑动平均 | 原始值 | 滑动平均 | |
风能密度/(W · m-2 · a-1) | -0.03 | -0.05 | -0.89* | -0.93** | -0.59** | -0.78** |
有效风速频率/(% · a-1) | -0.07 | -0.08 | -0.25* | -0.25** | -0.17** | -0.21** |
能级频率/(% · a-1) | -0.07 | -0.09 | -0.22* | -0.22** | -0.18** | -0.22** |
Table 1 Climatic long-term trend of the wind energy parameters of the Gwadar Port
风能要素 | 1月 | 7月 | 逐年 | |||
---|---|---|---|---|---|---|
原始值 | 滑动平均 | 原始值 | 滑动平均 | 原始值 | 滑动平均 | |
风能密度/(W · m-2 · a-1) | -0.03 | -0.05 | -0.89* | -0.93** | -0.59** | -0.78** |
有效风速频率/(% · a-1) | -0.07 | -0.08 | -0.25* | -0.25** | -0.17** | -0.21** |
能级频率/(% · a-1) | -0.07 | -0.09 | -0.22* | -0.22** | -0.18** | -0.22** |
项目 | 风能密度 | 有效风速频率 | 能级频率 | 变异系数 | ||||
---|---|---|---|---|---|---|---|---|
线性回归 | 神经网络 | 线性回归 | 神经网络 | 线性回归 | 神经网络 | 线性回归 | 神经网络 | |
CC | 0.6593* | 0.8608* | 0.6724* | 0.7331* | 0.6634* | 0.7002* | 0.6352* | 0.8484* |
Bias | 5.7897 | 3.0560 | 1.7890 | -0.2516 | 1.9375 | -0.5617 | 0.1101 | 0.0955 |
MAE | 33.4049 | 18.2077 | 9.9247 | 7.3124 | 9.6059 | 9.0033 | 0.2073 | 0.1494 |
NRMSE | 0.3347 | 0.1811 | 0.2795 | 0.2318 | 0.3174 | 0.2856 | 0.2028 | 0.1458 |
RMSE | 42.8393 | 23.1813 | 12.4186 | 10.0006 | 12.5472 | 11.7034 | 0.2452 | 0.1762 |
SI | 0.3316 | 0.1811 | 0.2766 | 0.2617 | 0.3136 | 0.2768 | 0.1812 | 0.1225 |
Table 2 Prediction precision of the wind energy of the Gwadar Port
项目 | 风能密度 | 有效风速频率 | 能级频率 | 变异系数 | ||||
---|---|---|---|---|---|---|---|---|
线性回归 | 神经网络 | 线性回归 | 神经网络 | 线性回归 | 神经网络 | 线性回归 | 神经网络 | |
CC | 0.6593* | 0.8608* | 0.6724* | 0.7331* | 0.6634* | 0.7002* | 0.6352* | 0.8484* |
Bias | 5.7897 | 3.0560 | 1.7890 | -0.2516 | 1.9375 | -0.5617 | 0.1101 | 0.0955 |
MAE | 33.4049 | 18.2077 | 9.9247 | 7.3124 | 9.6059 | 9.0033 | 0.2073 | 0.1494 |
NRMSE | 0.3347 | 0.1811 | 0.2795 | 0.2318 | 0.3174 | 0.2856 | 0.2028 | 0.1458 |
RMSE | 42.8393 | 23.1813 | 12.4186 | 10.0006 | 12.5472 | 11.7034 | 0.2452 | 0.1762 |
SI | 0.3316 | 0.1811 | 0.2766 | 0.2617 | 0.3136 | 0.2768 | 0.1812 | 0.1225 |
Fig. 9 Prediction values of wind power density, occurrence of effective wind speed, occurrence of wind power density greater than 100 W/m2 and coefficient of variation for the future 24 months ((a)-(d)), and the abnormal values between prediction and multi-year average value ((e)?(h))
[1] | 郑崇伟, 李崇银, 杨艳, 等. 瓜达尔港的风能开发可行性论证. 厦门大学学报(自然科学版), 2016,55(2):210-215 |
[2] | Chang T J, Wu Y T, Hsu H Y, et al.Assessment of wind characteristics and wind turbine characteristics in Taiwan.Renewable Energy, 2003,28:851-871 |
[3] | 陈飞, 班欣, 祈欣, 等. 连云港沿海地区及近海风能资源评估. 气象科学, 2008,28(增刊1):101-106 |
[4] | 毛慧琴, 宋丽莉, 黄浩辉, 等. 广东省风能资源区划研究. 自然资源学报, 2005,20(5):679-683 |
[5] | 周荣卫, 何晓风, 朱蓉, 等. 中国近海风能资源开发潜力数值模拟. 资源科学, 2010,32(8):1434- 1443 |
[6] | 郑崇伟, 李崇银. 中国南海岛礁建设: 重点岛礁的风候、波候特征分析. 中国海洋大学学报(自然科学版), 2015,45(9):1-6 |
[7] | 郑崇伟, 李崇银. 中国南海岛礁建设: 风力发电、海浪发电. 中国海洋大学学报(自然科学版), 2015,45(9):7-14 |
[8] | 谷兴凯, 范高锋, 王晓蓉, 等. 风电功率预测技术综述. 电网技术, 2007,31(2):335-338 |
[9] | Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc, 2011,137:553-597 |
[10] | Song L N, Liu Z L, Wang F.Comparison of wind data from ERA-Interim and buoys in the Yellow and East China Seas.Chinese Journal of Oceanology and Limnology, 2015,33(1):282-288 |
[11] | ECMWF.ERA-Interim wind data [EB/OL]. (2011‒ 01‒01) [2015‒06‒22]. |
[12] | Bao X H, Zhang F Q.Evaluation of NCEP-CFSR,NCEP-NCAR,ERA-Interim,ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau.Journal of Climate, 2013,26:206-214 |
[13] | 马永锋, 卞林根. ERA-Interim再分析和NCEP FNL分析资料在东南极中山站至 Dome A 断面的适用性研究. 极地研究, 2014,26(4):469-480 |
[14] | 王烨芳, 李成才, 石光明, 等. 江苏环港风电场风能资源特征分析. 北京大学学报(自然科学版), 2013,49(6):955-963 |
[15] | 黄世成, 姜爱军, 刘聪, 等. 江苏省风能资源重新估算与分布研究. 气象科学, 2007,27(4):407-412 |
[16] | 张吉豫, 刘先华, 梁堃, 等. 一种基于人工神经网络的基本块重排方法. 北京大学学报(自然科学版), 2011,47(1):9-16 |
[17] | 陈克海, 解学通, 黄舟, 等. 人工神经网络在星载散射计海面风场反演建模中的应用. 北京大学学报(自然科学版), 2007,43(4):460-467 |
[18] | 黄茂怡, 黄嘉佑, 王勇, 等. 近年来CCA在气候分析与气候预测中的应用. 北京大学学报(自然科学版), 2001,37(1):128-135 |
[19] | 郁亚娟, 王真, 郭怀成, 等. 基于人工神经网络的城市拓展区可持续发展指数序列研究. 北京大学学报(自然科学版), 2006,42(4):496-502 |
[20] | 段晓峰, 许学工, 陈满春, 等. 基于长期验潮数据的海平面预测方法与案例应用. 北京大学学报(自然科学版), 2014,50(6):1065-1070 |
[21] | 陈辉, 李双成, 郑度. 基于人工神经网络的青藏公路铁路沿线生态系统风险研究. 北京大学学报(自然科学版), 2005,41(4):586-593 |
[22] | 谢衷洁, 黄香, 叶伟彰, 等. 人工神经网络及其在金融预报中的应用. 北京大学学报(自然科学版), 2001,37(3):421-425 |
[23] | Miao W W, Jia H J, Wang D. Active power regulation of wind power systems through demand response.Science China Technology Science, 2012,55:1667-1676 |
[24] | Zheng C W, Pan J.Assessment of the global ocean wind energy resource.Renewable and Sustainable Energy Reviews, 2014,33:382-391 |
[25] | 郑崇伟, 黎鑫, 陈璇, 等. 经略 21 世纪海上丝路: 海洋资源、相关国家的海洋开发状况. 海洋开发与管理, 2016,33(3):3-8 |
[26] | 郭梦婷, 蔡旭辉, 宋宇. 全国低风速气象特征分析. 北京大学学报: 自然科学版, 2016,52(2):219-226 |
[27] | Cornett A M.A Global wave energy resource assessment // Proceedings of the Eighteenth(2008)International Offshore and Polar Engineering Con-ference. Vancouver, 2008: Paper No. ISOPE-2008-TPC-579 |
[1] | TIAN Yuan, CHANG Xiaoyin, ZHAO Wenyi, CHENG Chuyun, Bronte Scheuer, DENG Yanglanduo, MA Ruiping, ZHANG Jianxue. Supplemental Evaluation of Landslide Displacement Prediction Models [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60(3): 513-520. |
[2] | LIU Ya, YANG Haijun. Characteristics of the Northward Propagation of Summer Intraseasonal Oscillation over the Tropical Indian Ocean [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(4): 569-580. |
[3] |
TANG Lingpei, CHEN Xiaoqiu, QIAN Siwei, MO Zhihong.
Process-Based Simulation of Spring Flowering and Autumn Leaf Coloration of Main Ornamental Plants in Beijing Botanical Garden
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(4): 649-658.
|
[4] | TIAN Yuan, PANG Xiao, ZHAO Wenyi, CHANG Xiaoyin, CHENG Chuyun, ZOU Pei, CAO Xiaocheng. A Transformer-Based Model for Short-Term Landslide Displacement Prediction [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(2): 197-210. |
[5] |
HUANG Ran, WANG Xinlu, WANG Cong, DU Yunsong, YAN Bo, ZHANG Wenxian, LUO Bin, ZHANG Wei, HU Yongtao.
Future Year Air Quality Attainment Prediction Method Based on Design Value and Relative Response Factor: A Case Study Focusing on Implementation Planning of the 14th Five-Year Plan in Sichuan Province
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 553-564.
|
[6] |
QU Yonglin, WEN Xinyu, ZHANG Muqi, LIU Zhe.
Develop an Objective Post-processing System with Artificial Neural Network to Improve Numerical Weather Prediction for the Olympic Winter Games Beijing 2022
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 210-220.
|
[7] | ZHANG Yang, XIAN Huiting, ZHAO Zhijie. Real-Time River Water Quality Prediction Model Based on Spatial Correlation and Neural Network Model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 337-344. |
[8] | HU Yeting, LI Tianhong. Forecasting Spatial Pattern of Land Use Change in Rapidly Urbanized Regions Based on SD-CA Model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 372-382. |
[9] | LIAO Yiming, OUYANG Chunping, LIU Yongbin, HU Fuyu. Drug-Target Interactions Prediction Based on Meta-path of Heterogeneous Information Network [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 37-44. |
[10] | ZHOU Pei, HUANG Yingjie, HU Bingyi, WEI Jun. Spring Predictability Barrier Phenomenon in ENSO Prediction Model Based on LSTM Deep Learning Algorithm [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1071-1078. |
[11] | JIANG Lulu, WU Huan, Lorenzo Alfieri, LI Xiaomeng, John S. Kimball, CHEN Xiuwan. Review of Regionalization and Remote Sensing Based Method for Hydrological Model Parameters Calibration in Ungauged Basins [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(6): 1152-1164. |
[12] | LI Yihang, ZHAI Weixin, YAN Hanqi, ZHU Daoye, TONG Xiaochong, CHENG Chengqi. Prediction of PM2.5 Hour Concentration Based on U-net Neural Network [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(5): 796-804. |
[13] | ZOU Silin, REN Xiaochen, WANG Chenggong, WEI Jun. Impacts of Temporal Resolution and Spatial Information on Neural-Network-Based PM2.5 Prediction Model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 417-426. |
[14] | GUO Chun’an, GUAN Ping, SHI Yongmin, DU Shuheng. Identification and Prediction of “Sweet Spots” in Tight Sandstone Reservoirs Based on Logging Curve Dimensionless Rendezvous Method [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(2): 262-270. |
[15] | WANG Xin’an, YONG Shanshan, HUANG Jipan, Lü Yaxuan, ZHANG Xing, LIANG Yiwen. Earthquake Prediction Research Based on Data of ETA [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2): 209-214. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 634
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1614
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||