[1] |
Logan B E.Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 2009, 7(5): 375-381
|
[2] |
Logan B E.Microbial fuel cells. New York: John Wiley & Sons, 2008
|
[3] |
Liew K B, Daud W R W, Ghasemi M, et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review. International Journal of Hydrogen Energy, 2014, 39(10): 4870-4883
|
[4] |
Tao H C, Li W, Liang M, et al.A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(Ⅱ) with electricity generation. Bioresource Tech-nology, 2011, 102(7): 4774-4778
|
[5] |
Logan B E, Hamelers B, Rozendal R, et al.Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181-5192
|
[6] |
Cheng S, Liu H, Logan B E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communi-cations, 2006, 8(3): 489-494
|
[7] |
Liu H, Cheng S, Logan B E.Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 2005, 39(14): 5488-5493
|
[8] |
Xie X, Ye M, Hsu P C, et al.Microbial battery for efficient energy recovery. Proceedings of the National Academy of Sciences, 2013, 110(40): 15925-15930
|
[9] |
Guibal E.Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004, 38(1): 43-74
|
[10] |
Liu X F, Guan Y L, Yang D Z, et al.Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 2001, 79(7): 1324-1335
|
[11] |
Ibrahim M, Tao Z, Hussain A, et al.Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Archives of Microbiology, 2014, 196(1): 9-16
|
[12] |
Young D H, Köhle H, Kauss H.Effect of chitosan on membrane permeability of suspension-cultured gly-cine max and phaseolus vulgaris cells. Plant Physio-logy, 1982, 70(5): 1449-1454
|
[13] |
Dai J, Ren F L, Tao C Y.Adsorption behavior of Fe (Ⅱ) and Fe(Ⅲ) ions on thiourea cross-linked chitosan with Fe(Ⅲ) as template. Molecules, 2012, 17(4): 4388-4399
|
[14] |
Wan M W, Petrisor I G, Lai H T, et al.Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decon-tamination. Carbohydrate Polymers, 2004, 55(3): 249-254
|
[15] |
Zhang L, Yang S, Han T, et al.Improvement of Ag (Ⅰ) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Applied Surface Science, 2012, 263: 696-703
|
[16] |
Dambies L, Guimon C, Yiacoumi S, et al.Charac-terization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Sur-faces A: Physicochemical and Engineering Aspects, 2001, 177(2): 203-214
|
[17] |
Geng B, Jin Z, Li T, et al.Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nano-particles. Chemosphere, 2009, 75(6): 825-830
|
[18] |
Fan Y, Ai Z, Zhang L.Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment. Journal of Hazardous Mate-rials, 2010, 176(1): 678-684
|
[19] |
Migneault I, Dartiguenave C, Bertrand M J, et al.Glutaraldehyde: behavior in aqueous solution, reac-tion with proteins, and application to enzyme cross-linking. Biotechniques, 2004, 37(5): 790-806
|
[20] |
Tao H C, Liang M, Li W, et al.Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Journal of Hazardous Materials, 2011, 189(1): 186-192
|
[21] |
Tao H C, Lei T, Shi G, et al.Removal of heavy metals from fly ash leachate using combined bioelectro-chemical systems and electrolysis. Journal of Hazar-dous Materials, 2014, 264: 1-7
|