Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (1): 160-170.DOI: 10.13209/j.0479-8023.2016.120
• Orginal Article • Previous Articles Next Articles
Wudan XIE1, Jiansheng WU1,2,†()
Received:
2015-07-07
Revised:
2015-12-15
Online:
2017-01-20
Published:
2017-01-20
Contact:
Jiansheng WU
通讯作者:
吴健生
基金资助:
CLC Number:
Wudan XIE, Jiansheng WU. Effects of Land Use and Urban Landscape Pattern on PM2.5 Concentration: A Shenzhen Case Study[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1): 160-170.
谢舞丹, 吴健生. 土地利用与景观格局对 PM2.5 浓度的影响—— 以深圳市为例[J]. 北京大学学报自然科学版, 2017, 53(1): 160-170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2016.120
变量类别 | 变量描述 | 变量子类别 | 缓冲区 | 变量名称 | |
---|---|---|---|---|---|
道路长度 | 每种类型道路在不同缓冲区内的总长度(m) | mr (主要干道) cr (一般道路) | 100, 200, 300, 500, 750, 1000 | mr_xx cr_xx | |
餐饮数量 | 不同缓冲区内的餐饮业的店铺数量(个) | cat (餐饮业) | 100, 200, 300, 500, 750, 1000, 2000, 3000 | cat_xx | |
海拔 | 监测站点所在的海拔高度(m) | DEM (海拔) | - | DEM | |
土地利用类型 | 每种土地利用类型在不同缓冲区内的总面积(m2) | crop (耕地), vege (林地); wat (水体), cons (建设用地), bare (裸地); | 100, 300, 500, 1000, 2000, 3000 | crop_xx vege_xx wat_xx cons_xx bare_xx | |
景观指数(按景 观功能分) | 不同缓冲区内的景观指数, 包括类型水平和景观水平 | crop (耕地) vewa (林地和水体) coba (建设用地和裸地) | PLAND, ED, CONTAG, NP, AREA_MN | 100, 300, 500, 1000, 2000, 3000, 5000 | crop_yy_xx vewa_yy_xx coba_yy_xx |
景观指数(按土 地类型分) | 不同缓冲区内的景观指数, 包括类型水平和景观水平 | crop (耕地) vege (林地) wat (水体) cons (建设用地) bare (裸地) | PLAND, ED, CONTAG, NP, AREA_MN | 100, 300, 500, 1000, 2000, 3000, 5000 | crop_yy_xx vege_yy_xx wat_yy_xx cons_yy_xx bare_yy_xx |
Table 1 Classification and description of the independent variables
变量类别 | 变量描述 | 变量子类别 | 缓冲区 | 变量名称 | |
---|---|---|---|---|---|
道路长度 | 每种类型道路在不同缓冲区内的总长度(m) | mr (主要干道) cr (一般道路) | 100, 200, 300, 500, 750, 1000 | mr_xx cr_xx | |
餐饮数量 | 不同缓冲区内的餐饮业的店铺数量(个) | cat (餐饮业) | 100, 200, 300, 500, 750, 1000, 2000, 3000 | cat_xx | |
海拔 | 监测站点所在的海拔高度(m) | DEM (海拔) | - | DEM | |
土地利用类型 | 每种土地利用类型在不同缓冲区内的总面积(m2) | crop (耕地), vege (林地); wat (水体), cons (建设用地), bare (裸地); | 100, 300, 500, 1000, 2000, 3000 | crop_xx vege_xx wat_xx cons_xx bare_xx | |
景观指数(按景 观功能分) | 不同缓冲区内的景观指数, 包括类型水平和景观水平 | crop (耕地) vewa (林地和水体) coba (建设用地和裸地) | PLAND, ED, CONTAG, NP, AREA_MN | 100, 300, 500, 1000, 2000, 3000, 5000 | crop_yy_xx vewa_yy_xx coba_yy_xx |
景观指数(按土 地类型分) | 不同缓冲区内的景观指数, 包括类型水平和景观水平 | crop (耕地) vege (林地) wat (水体) cons (建设用地) bare (裸地) | PLAND, ED, CONTAG, NP, AREA_MN | 100, 300, 500, 1000, 2000, 3000, 5000 | crop_yy_xx vege_yy_xx wat_yy_xx cons_yy_xx bare_yy_xx |
类别 | 变量 | 类型水平_组成指数(r) | 类型水平_结构指数(r) | 景观水平指数(r) |
---|---|---|---|---|
景观指数 (按景观功能分) | 汇景观 | vewa_PLAND_5000 (-0.689) | vewa_ED_5000 (0.613) vewa_ED_300 (-0.655) | CONTAG_5000 (-0.729) AREA_MN_5000 (-0.734) |
源景观 | coba_PLAND_5000 (0.677) | coba_ED_5000 (0.634) coba_ED_300 (-0.732) | ||
不确定景观 | crop_PLAND_5000 (0.638) | - | ||
景观指数 (按土地类型分) | 林地 | vege_PLAND_5000 (-0.724) | CONTAG_5000 (-0.875) AREA_MN_5000 (-0.778) | |
水体 | - | wat_ED_5000 (0.617) | ||
建设用地 | cons_PLAND_5000 (0.651) | cons_ED_300 (-0.682) cons_ED_5000 (0.688) | ||
裸地 | - | bare_ED_5000 (0.711) | ||
耕地 | crop_PLAND_5000 (0.638) | - |
Table 2 Landscape metrics that had relationship with PM2.5 concentration (|r|>0.6)
类别 | 变量 | 类型水平_组成指数(r) | 类型水平_结构指数(r) | 景观水平指数(r) |
---|---|---|---|---|
景观指数 (按景观功能分) | 汇景观 | vewa_PLAND_5000 (-0.689) | vewa_ED_5000 (0.613) vewa_ED_300 (-0.655) | CONTAG_5000 (-0.729) AREA_MN_5000 (-0.734) |
源景观 | coba_PLAND_5000 (0.677) | coba_ED_5000 (0.634) coba_ED_300 (-0.732) | ||
不确定景观 | crop_PLAND_5000 (0.638) | - | ||
景观指数 (按土地类型分) | 林地 | vege_PLAND_5000 (-0.724) | CONTAG_5000 (-0.875) AREA_MN_5000 (-0.778) | |
水体 | - | wat_ED_5000 (0.617) | ||
建设用地 | cons_PLAND_5000 (0.651) | cons_ED_300 (-0.682) cons_ED_5000 (0.688) | ||
裸地 | - | bare_ED_5000 (0.711) | ||
耕地 | crop_PLAND_5000 (0.638) | - |
回归模型 | 变量 | 方程参数 | ||||
---|---|---|---|---|---|---|
B | Beta | t | Sig. | 其他参数 | ||
模型a | 常数项 | 34.399 | - | 20.514 | 0.000 | 修正R2=0.627 D-W值= 1.976 RMSE=2.741 μg/m3 F=9.420 (Sig.=0.008) |
vege_5000 | -1.472×10-7 | -0.575 | -2.914 | 0.019 | ||
crop_5000 | 8.826×10-6 | 0.501 | 2.540 | 0.035 | ||
模型b | 常数项 | 30.569 | - | 15.832 | 0.000 | 修正R2=0.710 D-W值=1.542 RMSE=4.642 μg/m3 F=13.233 (Sig.=0.003) |
coba_ED_300 | -0.091 | -0.621 | -3.552 | 0.007 | ||
coba_ED_5000 | 0.150 | 0.495 | 2.832 | 0.022 | ||
模型c | 常数项 | 43.498 | - | 35.441 | 0.000 | 修正R2=0.912 D-W值=2.184 RMSE=1.350 μg/m3 F=35.477 (Sig.=0.000) |
AREA_MN_5000 | -0.626 | -0.513 | -5.143 | 0.001 | ||
con_ED_300 | -0.084 | -0.623 | -6.287 | 0.000 | ||
AREA_MN_100 | -1.333 | -0.369 | -3.747 | 0.007 |
Table 3 Analysis of coefficient of land use regression equation
回归模型 | 变量 | 方程参数 | ||||
---|---|---|---|---|---|---|
B | Beta | t | Sig. | 其他参数 | ||
模型a | 常数项 | 34.399 | - | 20.514 | 0.000 | 修正R2=0.627 D-W值= 1.976 RMSE=2.741 μg/m3 F=9.420 (Sig.=0.008) |
vege_5000 | -1.472×10-7 | -0.575 | -2.914 | 0.019 | ||
crop_5000 | 8.826×10-6 | 0.501 | 2.540 | 0.035 | ||
模型b | 常数项 | 30.569 | - | 15.832 | 0.000 | 修正R2=0.710 D-W值=1.542 RMSE=4.642 μg/m3 F=13.233 (Sig.=0.003) |
coba_ED_300 | -0.091 | -0.621 | -3.552 | 0.007 | ||
coba_ED_5000 | 0.150 | 0.495 | 2.832 | 0.022 | ||
模型c | 常数项 | 43.498 | - | 35.441 | 0.000 | 修正R2=0.912 D-W值=2.184 RMSE=1.350 μg/m3 F=35.477 (Sig.=0.000) |
AREA_MN_5000 | -0.626 | -0.513 | -5.143 | 0.001 | ||
con_ED_300 | -0.084 | -0.623 | -6.287 | 0.000 | ||
AREA_MN_100 | -1.333 | -0.369 | -3.747 | 0.007 |
变量类型 | 模型a | 模型b | 模型c |
---|---|---|---|
路网 | - | - | - |
餐饮 | - | - | - |
海拔 | - | - | - |
土地利用类型 | crop_5000 (+) vege_5000 (-) | - | |
景观指数 | - | coba_ED_300 (-) coba_ED_5000 (+) | con_ED_300 AREA_MN_5000 AREA_MN_100 |
Table 4 Classification of the independent variables included in regression equations
变量类型 | 模型a | 模型b | 模型c |
---|---|---|---|
路网 | - | - | - |
餐饮 | - | - | - |
海拔 | - | - | - |
土地利用类型 | crop_5000 (+) vege_5000 (-) | - | |
景观指数 | - | coba_ED_300 (-) coba_ED_5000 (+) | con_ED_300 AREA_MN_5000 AREA_MN_100 |
[1] | Wang J L, Zhang Y H, Shao M, et al.Quantitative relationship between visibility and mass concentration of PM2.5 in Beijing. Journal of Environmental Sciences (China), 2006, 18(3): 475-481 |
[2] | 张智胜, 陶俊, 谢绍东, 等. 成都城区PM2.5 季节污染特征及来源解析. 环境科学学报, 2013, 33(11): 2947-2952 |
[3] | Sun Y, Wang Y, Zhang C.Vertical observations and analysis of PM2.5, O3, and NOx at Beijing and Tianjin from towers during summer and autumn 2006. Advances in Atmospheric Sciences, 2010, 27(1): 123-136 |
[4] | Li L, Wang W, Feng J, et al.Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China. Journal of Environmental Sciences, 2010, 22(3): 405-412 |
[5] | Cao G, Zhang X, Gong S, et al.Emission inventories of primary particles and pollutant gases for China. Chinese Science Bulletin, 2011, 56(8): 781-788 |
[6] | 中华人民共和国环境保护部. 国务院关于印发大气污染防治行动计划的通知[EB/OL]. (2013-09-12) [2015-03-12]. |
[7] | Wang H, Zhuang Y, Wang Y, et al.Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. Journal of Environmental Sciences (China), 2008, 20(11): 1323-1327 |
[8] | Wu S, Deng F, Wang X, et al.Association of lung function in a panel of young healthy adults with various chemical components of ambient fine parti-culate air pollution in Beijing, China. Atmospheric Environment, 2013, 77: 873-884 |
[9] | Shen Z, Hou X, Li W, et al.Relating landscape characteristics to non-point source pollution in a typical urbanized watershed in the municipality of Beijing. Landscape and Urban Planning, 2014, 123: 96-107 |
[10] | Rosenlund M, Forastiere F, Stafoggia M, et al.Comparison of regression models with land-use and emissions data to predict the spatial distribution of traffic-related air pollution in Rome. Journal of Exposure Science and Environmental Epidemiology, 2007, 18(2): 192-199 |
[11] | Ross Z, Jerrett M, Ito K, et al.A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, 2007, 41(11): 2255-2269 |
[12] | Henderson S B, Beckerman B, Jerrett M, et al.Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology, 2007, 41(7): 2422-2428 |
[13] | Yu M, Carmichael G R, Zhu T, et al.Sensitivity of predicted pollutant levels to anthropogenic heat emissions in Beijing. Atmospheric Environment, 2014, 89: 169-178 |
[14] | Eeftens M, Beelen R, de Hoogh K, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environmental Science & Technology, 2012, 46(20): 11195-11205 |
[15] | Nowak D J, Hirabayashi S, Bodine A, et al.Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environmental Pollution, 2013, 178: 395-402 |
[16] | Chen L, Peng S, Liu J, et al.Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China. Journal of Environmental Sciences, 2012, 24(4): 632-639 |
[17] | Yang J, McBride J, Zhou J, et al. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 2005, 3(2): 65-78 |
[18] | Hoek G, Beelen R, de Hoogh K, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 2008, 42(33): 7561-7578 |
[19] | Tang U W, Wang Z S.Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environmental Modelling & Software, 2007, 22(12): 1750-1764 |
[20] | 丁宇, 李贵才, 路旭, 等. 空间异质性及绿色空间对大气污染的削减效应: 以大珠江三角州为例. 地球科学进展, 2011, 30(11): 1415-1421 |
[21] | Weber N, Haase D, Franck U.Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landscape and Urban Planning, 2014, 125(6): 105-116 |
[22] | Escobedo F J, Nowak D J.Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 2009, 90(3/4): 102-110 |
[23] | 邵天一, 周志翔, 王鹏程, 等. 宜昌城区绿地景观格局与大气污染的关系. 应用生态学报, 2004,15(4): 691-696 |
[24] | Łowicki D.Prediction of flowing water pollution on the basis of landscape metrics as a tool supporting delimitation of nitrate vulnerable zones. Ecological Indicators, 2012, 23: 27-33 |
[25] | Tu J.Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography, 2011, 31(1): 376-392 |
[26] | Lee S, Hwang S, Lee S, et al.Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning, 2009, 92(2): 80-89 |
[27] | Schindler S, von Wehrden H, Poirazidis K, et al. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecological Indicators, 2013, 31: 41-48 |
[28] | Wu J, Jenerette G D, Buyantuyev A, et al.Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 2011, 8(1): 1-8 |
[29] | Schwarz N.Urban form revisited —selecting indicators for characterizing European cities. Lands-cape and Urban Planning, 2010, 96(1): 29-47 |
[30] | 深圳人居环境网. 2013 年度深圳市环境状况公报[EB/OL]. (2014-1-10) [2015-03-12]. |
[31] | 中华人民共和国环境保护部. 环境保护部发布 2013年重点区域和74个城市空气质量状况[EB/OL]. (2014-05-05) [2015-03-12]. |
[32] | 深圳市气象局. 2013年深圳市气候公报[EB/OL]. (2014-01-10) [2015-03-12]. |
[33] | 深圳人居环境网. 深圳市环境空气质量时报[EB/ OL]. (2015-1-10) [2015-03-12]. |
[34] | Ding A J, Fu C B, Yang X Q, et al.Ozone and fine particle in the western Yangtze River Delta: an overview of 1-yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013, 13(11): 5813-5830 |
[35] | Uuemaa E, Antrop M, Roosaare J, et al.Landscape metrics and indices: an overview of their use in landscape research. Living Reviews in Landscape Research, 2009, 3(1): 1-28 |
[36] | Santos-Filho M, Peres C A, Da Silva D J, et al. Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. Biodiver-sity and Conservation, 2012, 21(4): 1127-1147 |
[37] | McGarigal K, Cushman S A, Neel M C, et al. FRAGSTATS: spatial pattern analysis program for categorical maps. Amherst: University of Massachu-setts, 2002 |
[38] | 陈爱莲, 孙然好, 陈利顶. 绿地格局对城市地表热环境的调节功能. 生态学报, 2013, 33(8): 2372-2380 |
[39] | Maimaitiyiming M, Ghulam A, Tiyip T, et al.Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89(3): 59-66 |
[40] | Li H, Wu J.Use and misuse of landscape indices. Landscape Ecology, 2004, 19(4): 389-399 |
[41] | 中国科学院计算机网络信息中心. 国际科学数据服务平台[EB/OL]. (2010-10-25) [2015-03-15]. |
[42] | 徐建华. 现代地理学中的数学方法. 2版. 北京: 高等教育出版社, 2002: 37-59 |
[43] | 陶宇, 李锋, 王如松, 等. 城市绿色空间格局的定量化方法研究进展. 生态学报, 2013, 33(8): 2330-2342 |
[44] | Duh J, Shandas V, Chang H, et al.Rates of urbanisation and the resiliency of air and water quality. Science of the Total Environment, 2008, 400(1/2/3): 238-256 |
[45] | Tan P, Chou C, Chou C C K. Impact of urbanization on the air pollution “holiday effect” in Taiwan. Atmospheric Environment, 2013, 70: 361-375 |
[46] | Li X, Zhou W, Ouyang Z, et al.Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 2012, 27(6): 887-898 |
[47] | Morani A, Nowak D J, Hirabayashi S, et al.How to select the best tree planting locations to enhance air pollution removal in the million trees NYC initiative. Environmental Pollution, 2011, 159(5): 1040-1047 |
[48] | Connors J P, Galletti C S, Chow W T L. Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 2013, 28(2): 271-283 |
[49] | Buyantuyev A, Wu J.Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 2010, 25(1): 17-33 |
[1] | HAN Xili, ZHANG Xinyue. Study on Physical Activity Characteristics of Formal and Informal Sports Grounds in Urban Parks: A Case Study in Shenzhen [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(6): 981-990. |
[2] | ZHOU Pei, YANG Fan, WEI Jun. A PM2.5 Interpolation Method Based on Neural Network for Optimum City Matching [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(5): 793-800. |
[3] | WANG Nan, HAO Jinmin, HOSHINO Satoshi, TIAN Yufu. Study on the Relationship Between Industrial Structure and Land Use Structure of Rural Areas in Huang-Huai-Hai Plain: A Case Study of Quzhou County [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(5): 801-812. |
[4] |
LI Xiaojing, HAO Jianhua, CAI Yinfei, SUN Yanan.
Impact of Urbanization and Industrial Collaborative Agglomeration on Land Use Efficiency of Resource-Based Cities in the Yellow River Basin, China
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(4): 681-694.
|
[5] | CAO Jiyang, GONG Yue, LI Jiheng, PENG Hui. Integration of Towns and Industrial Zones in Pearl River Delta: A Case Study of Shishan and Songshanhu [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2023, 59(3): 489-500. |
[6] | WU Jiansheng, QIAN Yun, WANG Hongliang, ZHU Huizhen, WANG Han. Evaluation and Impact Factors of Spatial Supply and Demand of Public Sports Facilities in Shenzhen [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(6): 1101-1110. |
[7] | SONG Xue, WANG Hui, SHI Jianya, WANG Xuguang, SHEN Xiaoxue, LI Ruili. Mangrove Restoration Technology and Application in Difficult Site in Shenzhen Bay [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(5): 929-936. |
[8] |
WANG Junjing, HAN Xili.
Environmental Factors Influencing Women’s Safety Perception in Non-commercial Alleys in Urban Villages: A Case Study of Pingshan Village, Shenzhen
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(4): 655-663.
|
[9] | WU Jianan, CHU Jun, SUN Yiyu, CHAO Heng. Analysis of Urban Land Use Function Identification in Shenzhen Based on SOFM Network [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(4): 664-672. |
[10] | YU Yashen, HU Yuhan, ZHANG Shiqiu. A Case Study on Cost-effectiveness of Accelerated Vehicle Retirement Programs in Beijing [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(4): 763-770. |
[11] |
SANG Yueyang, CHU Yiqi, LIU Zhe, REN Jingjing, TIAN Xiaoqing, WANG Qixi, LI Chengcai.
Research on Relations between Atmospheric Mixing Layer Heights and Fine Particle Concentrations with Lidar Measurements
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 412-420.
|
[12] | LIU Zhe, ZHAO Weilun, TIAN Xiaoqing, SANG Yueyang, QU Yonglin, REN Jingjing, LI Chengcai. Retrieval of Ground PM2.5 Concentrations in Eastern China Using Data from Himawari-8 Satellite [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 443-452. |
[13] | WANG Qian, SHEN Xiaoxue, CAO Ye, LI Ruili. Characteristics and Influencing Factors of Mineral Composition of Urban Mangrove Sediments [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 282-290. |
[14] | HU Yeting, LI Tianhong. Forecasting Spatial Pattern of Land Use Change in Rapidly Urbanized Regions Based on SD-CA Model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 372-382. |
[15] |
JI Zhengxin, XU Yueqing, HUANG An, LU Longhui, DUAN Yaming.
Spatial Pattern and Evolution Characteristics of the Production-Living-Ecological Space in the Mountainous Area of Northern Hebei Province: A Case Study of Zhangjiakou City
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 123-134.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||