Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (4): 765-774.DOI: 10.13209/j.0479-8023.2017.086
• Orginal Article • Previous Articles Next Articles
Xinyu YANG1,*, Li LIN1,*(), Ying LI2, Jinsheng HE1,2
Received:
2016-03-16
Revised:
2016-05-03
Online:
2017-07-20
Published:
2017-07-20
Contact:
Xinyu YANG,Li LIN
通讯作者:
杨新宇,林笠
基金资助:
CLC Number:
Xinyu YANG, Li LIN, Ying LI, Jinsheng HE. Effects of Warming and Altered Precipitation on Soil Physical Properties
and Carbon Pools in a Tibetan Alpine Grassland[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 765-774.
杨新宇, 林笠, 李颖, 贺金生. 青藏高原高寒草甸土壤物理性质及碳组分对增温和降水改变的响应[J]. 北京大学学报自然科学版, 2017, 53(4): 765-774.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.086
Fig. 1 Soil temperature and soil moisture at depths of 5 and 10 cm under warming and altered precipitation regimes during the growing seasons from 2011 to 2013
处理 | 自由度 | 粉粒 | 砂粒 | 黏粒 | pH | TC | SOC | EOC | MBC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | ||
W | 1 | 1.28 | 0.27 | 2.65 | 0.11 | 0.53 | 0.47 | 0.01 | 0.93 | 0.03 | 0.88 | 0.05 | 0.82 | 2.00 | 0.17 | 4.29 | 0.05* |
P | 2 | 2.90 | 0.07† | 5.61 | 0.01** | 5.88 | 0.01** | 1.36 | 0.27 | 0.89 | 0.42 | 0.27 | 0.77 | 29.86 | 0.00** | 8.97 | 0.00** |
Block | 1 | 445.30 | 0.00** | 172.20 | 0.00** | 570.40 | 0.00** | 22.70 | 0.02* | 165.40 | 0.00** | 417.50 | 0.00** | 39.30 | 0.00** | 451.90 | 0.00** |
W*P | 2 | 1.39 | 0.26 | 1.82 | 0.18 | 0.36 | 0.70 | 0.92 | 0.41 | 1.62 | 0.22 | 0.89 | 0.42 | 1.13 | 0.34 | 0.74 | 0.49 |
W*L | 1 | 0.00 | 0.97 | 0.01 | 0.94 | 0.01 | 0.94 | 0.05 | 0.83 | 0.07 | 0.79 | 0.40 | 0.53 | 0.80 | 0.38 | 1.77 | 0.19 |
P*L | 2 | 0.15 | 0.86 | 0.84 | 0.44 | 0.37 | 0.69 | 2.04 | 0.15 | 0.72 | 0.50 | 0.17 | 0.84 | 0.61 | 0.55 | 3.48 | 0.04* |
W*P*L | 2 | 0.09 | 0.92 | 1.05 | 0.36 | 0.58 | 0.57 | 1.79 | 0.19 | 0.20 | 0.82 | 0.01 | 0.99 | 0.04 | 0.96 | 0.46 | 0.64 |
Table 1 Summary of split-plot design of the effects of warming (W), altered precipitation (P),layer (L) and their interactions on soil properties
处理 | 自由度 | 粉粒 | 砂粒 | 黏粒 | pH | TC | SOC | EOC | MBC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | ||
W | 1 | 1.28 | 0.27 | 2.65 | 0.11 | 0.53 | 0.47 | 0.01 | 0.93 | 0.03 | 0.88 | 0.05 | 0.82 | 2.00 | 0.17 | 4.29 | 0.05* |
P | 2 | 2.90 | 0.07† | 5.61 | 0.01** | 5.88 | 0.01** | 1.36 | 0.27 | 0.89 | 0.42 | 0.27 | 0.77 | 29.86 | 0.00** | 8.97 | 0.00** |
Block | 1 | 445.30 | 0.00** | 172.20 | 0.00** | 570.40 | 0.00** | 22.70 | 0.02* | 165.40 | 0.00** | 417.50 | 0.00** | 39.30 | 0.00** | 451.90 | 0.00** |
W*P | 2 | 1.39 | 0.26 | 1.82 | 0.18 | 0.36 | 0.70 | 0.92 | 0.41 | 1.62 | 0.22 | 0.89 | 0.42 | 1.13 | 0.34 | 0.74 | 0.49 |
W*L | 1 | 0.00 | 0.97 | 0.01 | 0.94 | 0.01 | 0.94 | 0.05 | 0.83 | 0.07 | 0.79 | 0.40 | 0.53 | 0.80 | 0.38 | 1.77 | 0.19 |
P*L | 2 | 0.15 | 0.86 | 0.84 | 0.44 | 0.37 | 0.69 | 2.04 | 0.15 | 0.72 | 0.50 | 0.17 | 0.84 | 0.61 | 0.55 | 3.48 | 0.04* |
W*P*L | 2 | 0.09 | 0.92 | 1.05 | 0.36 | 0.58 | 0.57 | 1.79 | 0.19 | 0.20 | 0.82 | 0.01 | 0.99 | 0.04 | 0.96 | 0.46 | 0.64 |
Fig. 2 Soil sandy proportion, clay proportion, dissolved organic carbon and microbial biomass carbon at depths of 0-10 cm under warming and altered precipitation regimes
深度/cm | 因素 | 自由度 | 粉粒 | 砂粒 | 黏粒 | pH | TC | SOC | EOC | MBC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |||
0~10 | W | 1 | 1.05 | 0.32 | 1.41 | 0.81 | 0.39 | 0.54 | 0.04 | 0.85 | 0.01 | 0.94 | 0.05 | 0.82 | 0.18 | 0.68 | 6.49 | 0.02* |
P | 2 | 1.83 | 0.19 | 6.02 | 0.01* | 7.79 | 0.00** | 2.45 | 0.12 | 0.37 | 0.70 | 0.18 | 0.84 | 24.08 | 0.00** | 13.13 | 0.00** | |
W*P | 2 | 0.62 | 0.55 | 1.79 | 0.20 | 1.32 | 0.30 | 1.97 | 0.17 | 0.27 | 0.77 | 0.38 | 0.69 | 0.50 | 0.62 | 0.80 | 0.47 | |
10~20 | W | 1 | 0.45 | 0.51 | 1.27 | 0.28 | 0.22 | 0.64 | 0.01 | 0.91 | 0.13 | 0.73 | 0.71 | 0.41 | 2.14 | 0.16 | 0.25 | 0.63 |
P | 2 | 1.38 | 0.28 | 1.15 | 0.34 | 1.31 | 0.30 | 0.17 | 0.84 | 1.59 | 0.24 | 0.33 | 0.73 | 9.92 | 0.00** | 0.67 | 0.53 | |
W*P | 2 | 0.80 | 0.47 | 1.17 | 0.34 | 0.14 | 0.87 | 0.11 | 0.90 | 2.05 | 0.16 | 0.67 | 0.53 | 0.64 | 0.54 | 0.66 | 0.66 |
Table 2 Summary of two-way analysis of variance (ANOVA) of the effects of warming (W), altered precipitation (P) and their interactions on soil properties
深度/cm | 因素 | 自由度 | 粉粒 | 砂粒 | 黏粒 | pH | TC | SOC | EOC | MBC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |||
0~10 | W | 1 | 1.05 | 0.32 | 1.41 | 0.81 | 0.39 | 0.54 | 0.04 | 0.85 | 0.01 | 0.94 | 0.05 | 0.82 | 0.18 | 0.68 | 6.49 | 0.02* |
P | 2 | 1.83 | 0.19 | 6.02 | 0.01* | 7.79 | 0.00** | 2.45 | 0.12 | 0.37 | 0.70 | 0.18 | 0.84 | 24.08 | 0.00** | 13.13 | 0.00** | |
W*P | 2 | 0.62 | 0.55 | 1.79 | 0.20 | 1.32 | 0.30 | 1.97 | 0.17 | 0.27 | 0.77 | 0.38 | 0.69 | 0.50 | 0.62 | 0.80 | 0.47 | |
10~20 | W | 1 | 0.45 | 0.51 | 1.27 | 0.28 | 0.22 | 0.64 | 0.01 | 0.91 | 0.13 | 0.73 | 0.71 | 0.41 | 2.14 | 0.16 | 0.25 | 0.63 |
P | 2 | 1.38 | 0.28 | 1.15 | 0.34 | 1.31 | 0.30 | 0.17 | 0.84 | 1.59 | 0.24 | 0.33 | 0.73 | 9.92 | 0.00** | 0.67 | 0.53 | |
W*P | 2 | 0.80 | 0.47 | 1.17 | 0.34 | 0.14 | 0.87 | 0.11 | 0.90 | 2.05 | 0.16 | 0.67 | 0.53 | 0.64 | 0.54 | 0.66 | 0.66 |
[1] | 周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40 |
[2] | 赵新全. 高寒草甸生态系统与全球变化.北京: 科学出版社, 2009 |
[3] | Yao T, shi Y, Thompson L. High resolution record of paleoclimate since the Little Ice Age from the Tibetan ice cores. Quaternary International, 1997, 37(2): 19-23 |
[4] | Liu X, Chen B.Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742 |
[5] | Duan A, Wu G, Zhang Q, et al.New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 2006, 51(11): 1396-1400 |
[6] | Li L, Yang S, Wang Z, et al.Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 2010, 42(2): 449-457 |
[7] | Piao S, Ciais P, Huang Y, et al.The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51 |
[8] | Chen H, Zhu Q, Peng C, et al.The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955 |
[9] | IPCC. Climate change 2013: summary for policymaker [R]. Valencia, 2013 |
[10] | Shi Y, Ma Y, Ma W, et al.Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 2013, 58(10): 1187-1199 |
[11] | Wang S, Duan J, Xu G, et al.Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376 |
[12] | Jin Z, Zhuang Q, He J S, et al.Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data. Climatic Change, 2013, 119(2): 435-449 |
[13] | Geng Y, Wang Z, Liang C, et al.Effect of geogra-phical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeo-graphy, 2012, 21(4): 416-427 |
[14] | Geng Y, Wang Y, Yang K, et al.Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One, 2012, 7(4): e34968 |
[15] | Yang Y H, Fang J Y, Tang Y H, et al.Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14(7): 1592-1599 |
[16] | Tan K, Ciais P, Piao S, et al.Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands.Global Biogeochemical Cycles, 2010,24(1): GB1013 |
[17] | 韩道瑞, 曹广民, 郭小伟, 等. 青藏高原高寒草甸生态系统碳增汇潜力. 生态学报, 2011, 31(24): 7408-7417 |
[18] | Yang Y H, Ma W H, Mohammat A, et al.Storage, patterns and controls of soil nitrogen in China. Pedosphere, 2007, 17(6): 776-785 |
[19] | Baumann F, He J S, Schmidt K, et al.Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 2009, 15(12): 3001-3017 |
[20] | Liu W, Chen S, Qin X, et al.Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 2012, 7(3): 035401 |
[21] | Yang Y, Ji C, Ma W, et al.Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 2012, 18(7): 2292-2300 |
[22] | Ji C J, Yang Y H, Han W X, et al.Climatic and edaphic controls on soil pH in alpine grasslands on the Tibetan Plateau, China: a quantitative analysis. Pedosphere, 2014, 24(1): 39-44 |
[23] | 裴志永, 欧阳华, 周才平. 青藏高原高寒草原碳排放及其迁移过程研究. 生态学报, 2003, 23(2): 231-236 |
[24] | 李娜, 王根绪, 高永恒, 等. 模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究. 土壤学报, 2010, 47(6): 1214-1224 |
[25] | Rui Y C, Wang S P, Xu Z H, et al.Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qingha-Tibet Plateau in China. Journal of Soils and Sediments, 2011, 11(6): 903-914 |
[26] | Andersson S, Nilsson S I.Influence of pH and temperature on microbial activity, substrate availabi-lity of soil-solution bacteria and leaching of dis-solved organic carbon in a mor humus. Soil Biology and Biochemistry, 2001, 33(9): 1181-1191 |
[27] | 衡涛, 吴建国, 谢世友, 等. 高寒草甸土壤碳和氮及微生物生物量碳和氮对温度与降水量变化的响应. 中国农学通报, 2011, 27(3): 425-430 |
[28] | Mastepanov M, Sigsgaard C, Dlugokencky E J, et al.Large tundra methane burst during onset of freezing. Nature, 2008, 456: 628-630 |
[29] | Zhao X Q, Zhou X M.Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 1999, 28(8): 642-647 |
[30] | Wang Y H, Liu H Y, Chung H, et al.Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoondominated Tibetan alpine grassland. Global Biogeochemical Cycles, 2014, 28(10): 1081-1095 |
[31] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005 |
[32] | Brookes P C, Landman A, Pruden G, et al.Chloro-form fumigation and the release of soil nitrogen: a repaid direct extraction method to measure microbial biomass nitrgen in soil.Soil Biology and Bioche-mistry, 1985, 17(6): 837-842 |
[33] | Vance E D, Brookes P C, Jenkinson D S.An extrac-tion method for measuring soil microbial biomass-C. Soil Biology and Biochemistry, 1987, 19(6): 703-707 |
[34] | Zheng Y, Yang W, Sun X, et al.Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Applied Microbiology and Biotechnology, 2012, 93(5): 2193-2203 |
[35] | 陈美玲. 模拟增氮和增雨对贝加尔针茅草甸草原的植被、土壤以及土壤真菌群落的影响[D]. 长春: 东北师范大学, 2013 |
[36] | Smith P, Fang C, Dawson J J, et al.Impact of global warming on soil organic carbon.Advances in Agro-nomy, 2008, 97(7): 1-43 |
[37] | Zhang B, Chen S Y, Zhang J F, et al.Depth-related responses of soil microbial communities toexperi-mental warming in an alpine meadow on the Qinghai-Tibet Plateau. European Journal of Soil Science, 2015, 66(3): 496-504 |
[38] | De Vries F T, Manning P, Tallowin J R, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 2012, 15(11): 1230-1239 |
[39] | Feng X, Simpson A J, Wilson K P, et al.Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 2008, 1(12): 836-839 |
[40] | Smith P.How long before a change in soil organic carbon can be detected?. Global Change Biology, 2004, 10(11): 1878-1883 |
[41] | Li N, Wang G X, Yang Y, et al.Plant production, and carbon and nitrogen source pools, are strongly inten-sified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Bio-chemistry, 2011, 43(5): 942-953 |
[42] | Zhang B, Chen S, He X, et al.Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-Tibet Plateau. PLoS One, 2014, 9(8): e103859 |
[43] | Davidson E A, Verchot L V, Cattânio J H, et al.Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000, 48(1): 53-69 |
[44] | Clark J S, Campbell J H, Grizzle H, et al.Soil microbial community response to drought and pre-cipitation variability in the Chihuahuan Desert. Mic-robial Ecology, 2009, 57(2): 248-260 |
[45] | Liu W X,Zhang Z H E,Wan S Q.Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195 |
[46] | Fu G, Shen Z X, Zhang X Z, et al.Response of soil microbial biomass to short-term experimental war-ming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2012, 61: 158-160 |
[47] | Giardina C P, Ryan M G.Evidence that decompo-sition rates of organic carbon in mineral soil do not vary with temperature. Nature, 2000, 404: 858-861 |
[48] | 黄昌勇.土壤学.北京:中国农业出版社, 2009 |
[49] | Dexter A.Soil physical quality: Part I. theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 2004, 120(3/4): 201-214 |
[50] | Bronick C J, Lal R.Soil structure and management: a review. Geoderma, 2005, 124(1/2): 3-22 |
[51] | Yang H J, Li Y, Wu M Y, et al.Plant community responses to nitrogen addition and increased preci-pitation: the importance of water availability and species traits. Global Change Biology, 2011, 17(9): 2936-2944 |
[52] | Tan K, Ciais P, Piao S L, et al.Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. Global Biogeochemical Cycles, 2010, 24(1): 425-427 |
[53] | 王蓓, 孙庚, 罗鹏, 等. 模拟升温和放牧对高寒草甸土壤有机碳氮组分和微生物生物量的影响. 生态学报, 2011, 31(6): 1506-1514 |
[54] | Yang Y H, Fang J Y, Ji C J, et al.Above and belowground biomass allocation in Tibetan grass-lands. Journal of Vegetation Science, 2009, 20(1): 177-184 |
[1] | SU Zirui, ZENG Faxu, ZHENG Chengyang. Effects of Nitrogen Addition on Soil Organic Carbon and Soil Respiration in Subtropical Evergreen Broad-Leaved Forest [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 517-525. |
[2] | CHEN Xinyue, YAO Xiaodong, ZENG Wenjing, WANG Wei. Spatial Pattern and Driving Factors of Soil Microbial Biomass Carbon in Grassland in Northern Agro-Pastoral Transition Zone [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2): 250-260. |
[3] | CHEN Xi,LIU Hongyan. Factors Affecting Soil Organic Carbon Density (SOCD) and Total Nitrogen Density (TND) in Inner Mongolian Steppe [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(2): 317-324. |
[4] | LIU Chang,REN Yanlin,HE Jinsheng. Soil Dissolved Organic Carbon Decreased Following 40-year Grassland Afforestation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 511-518. |
[5] | WANG Tao,YANG Yuanhe,MA Wenhong. Storage, Patterns and Environmental Controls of Soil Phosphorus in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945-952. |
[6] | LIU Shuhua. Numerical Simulation of the Heat and Moisture Fluxes at Different Underlying Surface [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1997, 33(1): 62-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||