Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2019, Vol. 55 ›› Issue (1): 75-83.DOI: 10.13209/j.0479-8023.2018.058

Previous Articles     Next Articles

Hybrid Neural Network for Recognition of the “de” Structure with Semantic Ellipsis

SHI Bingqing1, DAI Rubing2, QU Weiguang1,2,3,†, GU Yanhui1, ZHOU Junsheng1, LI Bin2, XU Ge3, SHI Shengwang1   

  1. 1. School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023
    2. School of Chinese Language and Literature, Nanjing Normal University, Nanjing 210097
    3. Fujian Provincial Key Laboratory of Information Processiong and Intelligent Control, Minjiang University, Fuzhou 350121
  • Received:2018-04-15 Revised:2018-08-15 Online:2019-01-20 Published:2019-01-20
  • Contact: QU Weiguang, E-mail: wgqu_nj(at)163.com

基于组合神经网络的语义省略“的”字结构识别

侍冰清1, 戴茹冰2, 曲维光1,2,3,†, 顾彦慧1, 周俊生1, 李斌2, 徐戈3, 史胜旺1   

  1. 1. 南京师范大学计算机科学与技术学院, 南京 210023
    2. 南京师范大学文学院, 南京 210097
    3. 闽江学院福建省信息处理与智能控制重点实验室, 福州 350121
  • 通讯作者: 曲维光, E-mail: wgqu_nj(at)163.com
  • 基金资助:
    国家自然科学基金(61772278, 61472191)、江苏省高校哲学社会科学优秀创新团队项目(2017STD006)和福建省信息处理与智能控制重点实验室开放基金(MJUKF201705)资助

Abstract:

To slove the classification of the “de” structure containing the usage of semantic ellipsis, a hybrid neural network is built. Firstly, the network uses a bidirectional LSTM (long short-term memory) neural network to learn more syntactic and semantic information of the “de” structure. Then, the network employs a Max-pooling
layer or GRU (gated recurrent unit) based multiple attention layers to capture features of ellipsis of the “de” structure by which the network can recognize the “de” structure containing the usage of semantic ellipsis. Experiments on CTB8.0 corpus show that the proposed approach can achieve accurate results efficiently, the F1 value is 96.67%.

Key words: neural network, “de&rdquo, structure, semantic ellipsis

摘要:

针对语义省略“的”字结构识别任务, 提出一种基于组合神经网络的识别方法。利用词语和词性, 通过双向LSTM (long short-term memory)神经网络, 学习“的”字结构深层次的语义语法表示。通过Max-pooling层和基于GRU(gated recurrent unit)的多注意力层, 捕获“的”字结构的省略特征, 完成语义省略“的”字结构识别任务。实验结果表明, 所提模型在CTB8.0(Chinese Treebank 8.0)语料中, 能够有效地识别语义省略的“的”字结构, F1值达到96.67%。

关键词: 神经网络, “的”字结构, 语义省略