Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (4): 607-616.DOI: 10.13209/j.0479-8023.2017.011
• Orginal Article • Previous Articles Next Articles
Jipei LIN1,2, Qinghong ZHANG1
Received:
2016-03-25
Revised:
2016-06-30
Online:
2017-07-20
Published:
2017-07-20
基金资助:
Jipei LIN, Qinghong ZHANG. Application of Dynamic Downscaling Method for the Large Eddy Simulation in a Radiation Fog Case[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4): 607-616.
林继配, 张庆红. 动力降尺度方法在辐射雾大涡模拟中的应用[J]. 北京大学学报自然科学版, 2017, 53(4): 607-616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.011
实验名称 | 参数名称 | 参数设置 | |||||
---|---|---|---|---|---|---|---|
D01 | D02 | D03 | D04 | D05 | |||
PBL3.3km(3p) | 分辨率 | 30 km | 10 km | 3.3 km | - | - | |
水平格点 | 100×115 | 202×226 | 301×301 | - | - | ||
边界层方案 | QNSE | QNSE | QNSE | - | - | ||
feedback | - | 1 | 1 | - | - | ||
PBL1.1km(4p) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | - | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | - | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | - | ||
feedback | - | 1 | 1 | 1 | - | ||
LES1.1km(4l) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | - | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | - | ||
边界层方案 | QNSE | QNSE | QNSE | - | - | ||
feedback | - | 1 | 1 | 1 | - | ||
PBL222m(5p) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | 222 m | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | 1201×1201 | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | QNSE | ||
feedback | - | 1 | 1 | 1 | 1 | ||
LES222m(5l) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | 222 m | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | 1201×1201 | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | 关闭 | ||
feedback | - | 1 | 1 | 1 | 1 |
Table 1 Configuration of resolution, horizontal grid points and boundary layer schemes of different experiments
实验名称 | 参数名称 | 参数设置 | |||||
---|---|---|---|---|---|---|---|
D01 | D02 | D03 | D04 | D05 | |||
PBL3.3km(3p) | 分辨率 | 30 km | 10 km | 3.3 km | - | - | |
水平格点 | 100×115 | 202×226 | 301×301 | - | - | ||
边界层方案 | QNSE | QNSE | QNSE | - | - | ||
feedback | - | 1 | 1 | - | - | ||
PBL1.1km(4p) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | - | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | - | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | - | ||
feedback | - | 1 | 1 | 1 | - | ||
LES1.1km(4l) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | - | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | - | ||
边界层方案 | QNSE | QNSE | QNSE | - | - | ||
feedback | - | 1 | 1 | 1 | - | ||
PBL222m(5p) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | 222 m | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | 1201×1201 | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | QNSE | ||
feedback | - | 1 | 1 | 1 | 1 | ||
LES222m(5l) | 分辨率 | 30 km | 10 km | 3.3 km | 1.1 km | 222 m | |
水平格点 | 100×115 | 202×226 | 301×301 | 412×412 | 1201×1201 | ||
边界层方案 | QNSE | QNSE | QNSE | QNSE | 关闭 | ||
feedback | - | 1 | 1 | 1 | 1 |
[1] | Bergot T.Small-scale structure of radiation fog: a large-eddy simulation study.Quarterly Journal of the Royal Meteorological Society, 2013,121:1099-1112 |
[2] | Bergot T, Escobar J, Masson V.Effect of small-scale surface heterogeneities and buildings on radiation fog: large-eddy simulation study at Paris-Charles de Gaulle airport. Quarterly Journal of the Royal Meteorological Society, 2015,141:285-298 |
[3] | Nakanishi M.Large-eddy simulation of radiation fog.Boundary-layer Meteorology, 2000,94(3):461-493 |
[4] | Román-Cascón C, Steeneveld G J, Yagüe C, et al. Radiation fogs: WRF and LES numerical experiments // 14th EMS Annual Meeting & 10th European Confe-rence on Applied Climatology (ECAC). EMS Annual Meeting Abstracts Vol. 11. Prague, 2014: EMS2014-375 |
[5] | Alizadeh-Choobari O. Large-eddy simulation of the hurricane boundary layer: evaluation of the plane- tary boundary-layer parametrizations. Atmospheric Research, 2015,154:73-88 |
[6] | Joe D K, Zhang H, Denero S P, et al.Implementation of a high-resolution Source-Oriented WRF/Chem model at the Port of Oakland.Atmospheric Environ-ment, 2014,82:351-393 |
[7] | Zhu P, Albrecht BA, Ghate V P, et al.Multiple-scale simulations of stratocumulus clouds. Journal of Geophysical Research, 2010,115(D23):D23201.1-D23201.20 |
[8] | Deardorff J W.Numerical investigation of neutral and unstable planetary boundary layers.J Atmos Sci, 1972,29(1):91-115 |
[9] | 蒋维楣, 苗世光. 大涡模拟与大气边界层研究: 30年回顾与展望. 自然科学进展, 2004,14(1):11-19 |
[10] | Cuxart J, Bougeault P, Redelsperger J. A turbulence scheme allowing for mesoscale and large-eddy simu-lations. Quarterly Journal of the Royal Meteorological Society, 2000,126:1-30 |
[11] | 左全, 张庆红. 大涡模拟在华北地区一次冬季辐射雾过程中的应用. 北京大学学报: 自然科学版, 2016,51(3):427-436 |
[12] | 王雅萍. WRF 模式气候动力降尺度的适应性研究[D]. 兰州: 兰州大学, 2014 |
[13] | 徐红, 龚强.基于 ndown 的 WRF 模式降尺度方法研究. 现代农业科技, 2015(20):200-201 |
[14] | 左河疆, 孙银川, 崔洋. WRF 模式三种降尺度方案在风功率预报业务中的效果对比分析. 电网与清洁能源, 2013,29(10):105-108 |
[15] | 陈威霖. 基于多模式和降尺度结合的中国区域未来气候变化预估研究[D]. 南京: 南京信息工程大学, 2012 |
[16] | 何志强, 卢新平, 金宏忆. 首都机场近10年辐射雾的特征分析 // 第 31 届中国气象学会年会: S3 短期气候预测理论、方法与技术.北京, 2014: 30-37 |
[17] | Kunkel B A.Parameterizationn of droplet teminal velocity and extinction coeffient in fog models. Journal of Climate and Applied Meteorology, 1984,23(1):34-41 |
[18] | Muller M.Numerical simulation of fog and radiation in complex terrain [D]. Basel: University of Basel, 2006 |
[19] | Zhou B, Du J.Fog prediction from a multimodel mesoscale ensemble prediction system. Weather and Forecasting, 2010,25(1):303-322 |
[20] | Zhou B, Du J, Gultepe I, et al. Forecast of low visibility and fog from NCEP: current status and efforts..Pure and Applied Geophysics, 2011,169(5/6):895-909 |
[21] | Hong S Y, Lim J O J.The WRF single-moment 6-class microphysics scheme(WSM6). Journal of Korean Meteorologic Society, 2006,42(2):129-151 |
[22] | Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-model for the longwave. Journal of Geophysical Research, 1997, 102(D14): 16663-16682 |
[23] | Dudhia J.Numerical study of convection observed during the winter monsoon experiment using a meso-scale two-dimensional model.Journal of Atmospheric Sciences, 1989,46(20):3077-3107 |
[24] | Ma L M, Tan Z M.Improving the behavior of the cumulus parameterization for tropical cyclone predic-tion: convection trigger. Atmospheric Research, 2009,92(2):190-211 |
[25] | Sukoriansky S, Galperin B, Preov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice.Boundary-Layer Meteorology, 2005,117(2):231-257 |
[1] | ZHANG Muqi, WEN Xinyu, BAO Yun, QU Yonglin. Statistical Downscaled Climate Projection Dataset for China Using Artificial Neural Network [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 221-233. |
[2] | KANG Ling, ZHU Hao, HUANG Qianqian, LIU Xinjian, LIN Hongtao, CAI Xuhui, SONG Yu, ZHANG Hongsheng. Impact of Temporal and Spatial Resolution of CALMET on the Simulated Concentration Fields of CALPUFF [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1006-1018. |
[3] | LI Qianhui, ZHANG Hongsheng, JU Tingting, XIAO Kaitao. Experimental Research on the Characteristics of the Atmospheric Boundary Layer in the Semi-arid North China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(2): 215-222. |
[4] | YAN Yan, MIAO Yucong, LI Jian, GUO Jianping. Meteorological Characteristics of Prolong Low-Visibility Events in Haikou during February 2018 [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(5): 899-906. |
[5] | Yimin ZHOU, Ang ZHANG, Xinyi ZHAO. Analysis of Vulnerable Characteristics in Chinese Northern Farming-Pastoral Region Based on Coordinated Regional Downscaling Experiment [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 1099-1107. |
[6] | Yimin ZHOU, Xinyi ZHAO. Correlation Analysis between PM2.5 Concentration and Meteorological Factors in Beijing Area [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1): 111-124. |
[7] | YE Xinxin, WEI Wei, LI Hang, ZHANG Hongsheng. Study of Turbulence Transfer at Different Levels during Fog Periods in Tianjin [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 809-818. |
[8] | ZUO Quan, ZHANG Qinghong. Application of Large Eddy Simulation for a Winter Radiation Fog Event in North China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 819-829. |
[9] | YANG Yang, LIU Xiaoyang, LU Zhenghui, LI Hao. Study on Depth of Atmospheric Boundary Layerin Gobi Desert Regions of the Bosten Lake Basin [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 829-836. |
[10] | WEI Wei,YE Xinxin,WANG Haixia,ZHANG Hongsheng. Application of Aircraft Wind Data in the Study of Atmospheric Boundary Layer [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1): 24-34. |
[11] | ZHANG Zhenzhou,CAI Xuhui,SONG Yu,KANG Ling,HUANG Xin,LI Qinyi. Temporal and Spatial Variation of Atmospheric Boundary Layer Height over Hainan Island and Its Adjacent Sea Areas [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(5): 783-790. |
[12] | LIANG Zhi,XU Wanyun,HUANG Mengyu,LIU Xiaoyang,ZHAO Chunsheng. A Parameterization Scheme of Water Vapor Profiles over Beijing Based on Radiosonde Data [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(2): 261-268. |
[13] | ZHANG Bihui,LIU Shuhua,MA Yanjun,LIU Heping. Improvements to the Peking University Model of Atmospheric Environment (PUMA) and Its Application over Shenyang, China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(1): 47-53. |
[14] | GUO Li,ZHANG Yankun,LIU Shuhua,LI Ju,MA Yanjun. Correlation Analysis between PM10 Mass Concentration and Meteorological Elements of Atmospheric Boundary Layer in Beijing Area [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4): 607-612. |
[15] | HE Yufei,ZHANG Hongsheng,LIU Mingxing,KANG Ling. A Study on Determining Aerodynamic Parameters over Gobi Desert Surface [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 439-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||