摘要:
为了研究整夜睡眠状况和睡眠过程, 利用多导睡眠仪(polysomnography, PSG)和体动记录仪, 分别记录被试的ECG信号和体动信号, 再对 ECG信号提取心率变异性(heart rate variability, HRV)的特征值, 并将其作为实验数据的特征参数。为了提高识别率和防止过度拟合, 将实验数据分为训练集和测试集, 设计一个用遗传算法改进的BP神经网络模型, 对样本进行训练和预测。研究结果表明, 改进的BP神经网络能有效地识别测试样本, 综合识别准确率为86.29%。将检测ECG信号和体动信号的穿戴式设备与睡眠分期识别算法相结合, 能够用于家庭睡眠监测, 也可作为睡眠疾病的初筛方法。
刘众, 王新安, 李秋平, 赵天夏. 基于ECG信号和体动信号的睡眠分期方法研究[J]. 北京大学学报自然科学版, 2021, 57(5): 833-840.
LIU Zhong, WANG Xin’an, LI Qiuping, ZHAO Tianxia. Research of Sleep Staging Algorithms Based on ECG and Body Motion Signals[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(5): 833-840.