北京大学学报自然科学版 ›› 2017, Vol. 53 ›› Issue (6): 1068-1080.DOI: 10.13209/j.0479-8023.2017.115
陈梅1,2, 宋豫秦1(), 秦大公2, 祝茜3, 韦重霄4
收稿日期:
2016-05-17
修回日期:
2016-06-08
出版日期:
2017-11-20
发布日期:
2017-11-20
基金资助:
Mei CHEN1,2, Yuqin SONG1(), Dakong QIN2, Qian ZHU3, Chongxiao WEI4
Received:
2016-05-17
Revised:
2016-06-08
Online:
2017-11-20
Published:
2017-11-20
摘要:
为了探索污染对海洋生物栖息地的影响, 以2006—2007年中华白海豚在广西钦州三娘湾及其邻近海域的出现数据为基础, 结合Google海洋地形数据、卫星遥感数据和2012年度海洋环境调查数据, 构建干、湿季节海豚分布预测的最大熵模型, 发现与主要河口的距离是决定海豚栖息地分布的最主要因素。比较基于不同环境变量的模型预测结果, 发现海豚分布范围还受到水体营养盐和持久性污染物质的限制性影响, 在干旱季节和湿润季节都出现预测栖息地面积缩小的现象。根据模型预测和比较结果, 得到中华白海豚的栖息地选择策略: 选择河口海域生活以获得丰富的鱼类食物, 同时趋向于回避高污染风险的区域。研究结论对海洋保护区的选址及管理策略具有参考意义。
陈梅, 宋豫秦, 秦大公, 祝茜, 韦重霄. 海洋污染对中华白海豚栖息地选择的影响研究[J]. 北京大学学报自然科学版, 2017, 53(6): 1068-1080.
Mei CHEN, Yuqin SONG, Dakong QIN, Qian ZHU, Chongxiao WEI. Study of Marine Pollution Impact on the Habitat Selection of Indo-Pacific Humpback Dolphins[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 1068-1080.
模型 | 变量数量 | 变量名称 | |
---|---|---|---|
海洋地理地形组 | 水环境组 | ||
SNW_DS_5 | 5 | Aspect, Depth, Dis_ mrm, Dis_iso5, Slope | - |
SNW_DS_10 | 10 | BOD, WPb, WPCBs, B_chla, FHW | |
SNW_WS_5 | 5 | - | |
SNW_WS_14 | 14 | SST, SD, N, P, BOD, WDDT, WHg, WPCBs, B_chla |
表1 模型中所采用的环境变量
Table 1 Environmental variables used in the Maxent models
模型 | 变量数量 | 变量名称 | |
---|---|---|---|
海洋地理地形组 | 水环境组 | ||
SNW_DS_5 | 5 | Aspect, Depth, Dis_ mrm, Dis_iso5, Slope | - |
SNW_DS_10 | 10 | BOD, WPb, WPCBs, B_chla, FHW | |
SNW_WS_5 | 5 | - | |
SNW_WS_14 | 14 | SST, SD, N, P, BOD, WDDT, WHg, WPCBs, B_chla |
模型 | 样本量 | AUC | ESS阈值 | 遗漏率/% | ||
---|---|---|---|---|---|---|
训练数据 | 验证数据 | 训练数据 | 验证数据 | |||
SNW_DS_5 | 66 (44.9) | 21 (14.3) | 0.905 | 0.880 | 0.437 | 18.4 (27/147) |
SNW_DS_10 | 66 (44.9) | 21 (14.3) | 0.940 | 0.928 | 0.452 | 10.9 (16/147) |
SNW_WS_5 | 56 (43.0) | 18 (13.8) | 0.917 | 0.794 | 0.449 | 16.9 (22/130) |
SNW_WS_14 | 56 (43.0) | 18 (13.8) | 0.959 | 0.822 | 0.345 | 10.0 (13/130) |
表2 SNW模型预测评价及验证的主要参数
Table 2 Main parameters for model evaluation and test
模型 | 样本量 | AUC | ESS阈值 | 遗漏率/% | ||
---|---|---|---|---|---|---|
训练数据 | 验证数据 | 训练数据 | 验证数据 | |||
SNW_DS_5 | 66 (44.9) | 21 (14.3) | 0.905 | 0.880 | 0.437 | 18.4 (27/147) |
SNW_DS_10 | 66 (44.9) | 21 (14.3) | 0.940 | 0.928 | 0.452 | 10.9 (16/147) |
SNW_WS_5 | 56 (43.0) | 18 (13.8) | 0.917 | 0.794 | 0.449 | 16.9 (22/130) |
SNW_WS_14 | 56 (43.0) | 18 (13.8) | 0.959 | 0.822 | 0.345 | 10.0 (13/130) |
变量 | 贡献类型 | 贡献率/% | |||
---|---|---|---|---|---|
SNW_DS_5 | SNW_DS_10 | SNW_WS_5 | SNW_WS_14 | ||
Dis_mrm | 累积 | 74.9 | 54.1 | 62.6 | 13.7 |
置换 | 60.6 | 59.1 | 49.8 | 39.0 | |
Slope | 累积 | 16.0 | 5.1 | 20.8 | 4.9 |
置换 | 17.5 | 4.8 | 26.4 | 3.0 | |
Depth | 累积 | 6.0 | 6.1 | 4.0 | 0.8 |
置换 | 13.7 | 13.0 | 19.9 | 0.7 | |
Aspect | 累积 | 2.3 | 1.5 | 2.2 | 0.1 |
置换 | 4.0 | 1.4 | 3.3 | 0.2 | |
Dis_iso5 | 累积 | 0.8 | 1.2 | 10.9 | 7.3 |
置换 | 4.2 | 0 | 0.5 | 8.9 | |
B_chla | 累积 | 0 | 20.5 | 0 | 0.6 |
置换 | 0 | 10.1 | 0 | 1.4 | |
SD | 累积 | 0 | 0 | 0 | 26.3 |
置换 | 0 | 0 | 0 | 18.9 | |
WPCBs | 累积 | 0 | 4.0 | 0 | 0.6 |
置换 | 0 | 3.3 | 0 | 1.8 | |
BOD | 累积 | 0 | 4.0 | 0 | 1.8 |
置换 | 0 | 0 | 0 | 0.7 | |
FHW | 累积 | 0 | 3.0 | 0 | 0 |
置换 | 0 | 0.9 | 0 | 0 | |
WPb | 累积 | 0 | 0.6 | 0 | 0 |
置换 | 0 | 7.3 | 0 | 0 | |
P | 累积 | 0 | 0 | 0 | 15.0 |
置换 | 0 | 0 | 0 | 12.3 | |
N | 累积 | 0 | 0 | 0 | 3.1 |
置换 | 0 | 0 | 0 | 6.0 | |
WDDT | 累积 | 0 | 0 | 0 | 19.2 |
置换 | 0 | 0 | 0 | 2.7 | |
WHg | 累积 | 0 | 0 | 0 | 6.2 |
置换 | 0 | 0 | 0 | 4.2 | |
SST | 累积 | 0 | 0 | 0 | 0.4 |
置换 | 0 | 0 | 0 | 0 |
表3 变量对SNW模型的贡献率
Table 3 Relative contributions of the environmental variables to the SNW models
变量 | 贡献类型 | 贡献率/% | |||
---|---|---|---|---|---|
SNW_DS_5 | SNW_DS_10 | SNW_WS_5 | SNW_WS_14 | ||
Dis_mrm | 累积 | 74.9 | 54.1 | 62.6 | 13.7 |
置换 | 60.6 | 59.1 | 49.8 | 39.0 | |
Slope | 累积 | 16.0 | 5.1 | 20.8 | 4.9 |
置换 | 17.5 | 4.8 | 26.4 | 3.0 | |
Depth | 累积 | 6.0 | 6.1 | 4.0 | 0.8 |
置换 | 13.7 | 13.0 | 19.9 | 0.7 | |
Aspect | 累积 | 2.3 | 1.5 | 2.2 | 0.1 |
置换 | 4.0 | 1.4 | 3.3 | 0.2 | |
Dis_iso5 | 累积 | 0.8 | 1.2 | 10.9 | 7.3 |
置换 | 4.2 | 0 | 0.5 | 8.9 | |
B_chla | 累积 | 0 | 20.5 | 0 | 0.6 |
置换 | 0 | 10.1 | 0 | 1.4 | |
SD | 累积 | 0 | 0 | 0 | 26.3 |
置换 | 0 | 0 | 0 | 18.9 | |
WPCBs | 累积 | 0 | 4.0 | 0 | 0.6 |
置换 | 0 | 3.3 | 0 | 1.8 | |
BOD | 累积 | 0 | 4.0 | 0 | 1.8 |
置换 | 0 | 0 | 0 | 0.7 | |
FHW | 累积 | 0 | 3.0 | 0 | 0 |
置换 | 0 | 0.9 | 0 | 0 | |
WPb | 累积 | 0 | 0.6 | 0 | 0 |
置换 | 0 | 7.3 | 0 | 0 | |
P | 累积 | 0 | 0 | 0 | 15.0 |
置换 | 0 | 0 | 0 | 12.3 | |
N | 累积 | 0 | 0 | 0 | 3.1 |
置换 | 0 | 0 | 0 | 6.0 | |
WDDT | 累积 | 0 | 0 | 0 | 19.2 |
置换 | 0 | 0 | 0 | 2.7 | |
WHg | 累积 | 0 | 0 | 0 | 6.2 |
置换 | 0 | 0 | 0 | 4.2 | |
SST | 累积 | 0 | 0 | 0 | 0.4 |
置换 | 0 | 0 | 0 | 0 |
[1] | Block W M, Brennan L A.The habitat concept in ornithology // Power D M. Current Ornithology. Boston: Springer, 1993 |
[2] | Gilliam J F, Fraser D F.Habitat selection under predation hazard: test of a model with foraging minnows. Ecology, 1987, 68(6): 1856-1862 |
[3] | Small C.Global population distribution and urban land use in geophysical parameter space. Earth Intera-ctions, 2004, 8(8): 1-18 |
[4] | Halpern B S, Walbridge S, Selkoe K A, et al.A global map of human impact on marine ecosystems. Science, 2008, 319: 948-952 |
[5] | Schipper J, Chanson J S, Chiozza F, et al.The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science, 2008, 322: 225-230 |
[6] | Lotze H K, Lenihan H S, Bourque B J, et al.Deple-tion, degradation, and recovery rotential of estuaries and coastal seas. Science, 2006, 312: 1806-1809 |
[7] | Moore S E.Marine mammals as ecosystem sentinels. Journal of Mammalogy, 2008, 89(3): 534-540 |
[8] | Elliott J E, Elliott K H.Tracking marine pollution. Science, 2013, 340: 556-558 |
[9] | Bowen W.Role of marine mammals in aquatic ecosystems. Marine Ecology Progress Series, 1997, 158: 267-274 |
[10] | Edgar G J, Stuart-Smith R D, Willis T J, et al. Global conservation outcomes depend on marine protected areas with five key features. Nature, 2014, 506: 216-220 |
[11] | Hooker S K, Whitehead H, Gowans S.Marine protected area design and the spatial and temporal distribution of cetaceans in a submarine canyon. Conservation Biology, 1999, 13(3): 592-602 |
[12] | Franklin J.Mapping species distributions: spatial inference and prediction. New York: Cambridge Uni-versity Press, 2009 |
[13] | Guisan A, Zimmermann N E.Predictive habitat dis-tribution models in ecology. Ecological Modelling, 2000,135(2): 147-186 |
[14] | Elith J, Graham C H, Anderson R P.et al.Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151 |
[15] | Phillips S J, Anderson R P, Schapire R E.Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190(3/4): 231-259 |
[16] | Phillips S J, Dudík M, Schapire R E.A maximum entropy approach to species distribution modeling // Proceedings of the Twenty-first International Confe-rence on Machine Learning. Banff, 2004: 83 |
[17] | Phillips S J, Dudik M.Modeling of species distribu-tions with Maxent: new extensions and a comprehen-sive evaluation. Ecography, 2008, 31(2): 161-175 |
[18] | Edren S M C, Wisz M S, Teilmann J, et al. Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography, 2010, 33(4): 698-708 |
[19] | Moura A E, Sillero N, Rodrigues A.Common dolphin(Delphinus delphis) habitat preferences using data from two platforms of opportunity. Acta Oecologica-International Journal of Ecology, 2012, 38: 24-32 |
[20] | Thorne L H, Johnston D W, Urban D L, et al.Predictive modeling of spinner d(Stenella longi-rostris) resting habitat in the main Hawaiian Islands. Plos One, 2012, 7(8): 1-14 |
[21] | MacLeod C D, Santos M B, Burns F, et al. Can habitat modelling for the octopus Eledone cirrhosa help identify key areas for Risso’s dolphin in Scottish waters?. Hydrobiologia, 2014, 725(1): 125-136 |
[22] | Xu X, Song J, Zhang Z, et al.The world’s second largest population of humpback dolphins in the waters of Zhanjiang deserves the highest conservation prio-rity. Scientific Reports, 2015, 5: 1-9 |
[23] | 王丕烈, 韩家波.中国水域中华白海豚种群分布现状与保护. 海洋环境科学, 2007, 26(5): 484-487 |
[24] | 陈炳耀, 翟飞飞, 徐信荣.厦门水域中华白海豚栖息地选择的初步研究. 兽类学报, 2007, 27(1): 92-95 |
[25] | Karczmarski L, Cockcroft V G, McLachlan A. Habitat use and preferences of Indo-Pacific humpback dol-phins Sousa chinensis in Algoa Bay, South Africa. Marine Mammal Science, 2000, 16(1): 65-79 |
[26] | Jefferson T A.Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs, 2000, 64: 1-65 |
[27] | Tanabe S, Subramanian A, Ramesh A, et al.Persistent organochlorine residues in dolphins from the Bay of Bengal, South India. Marine Pollution Bulletin, 1993, 26(6): 311-316 |
[28] | Minh T B, Watanabe M, Nakata H, et al.Con-tamination by persistent organochlorines in small cetaceans from Hong Kong coastal waters. Marine Pollution Bulletin, 1999, 39: 383-392 |
[29] | Leung C C M, Jefferson T A, Hung S K, et al. Petroleum hydrocarbons, polycyclic aromatic hydro-carbons, organochlorine pesticides and polychlorinated biphenyls in tissues of Indo-Pacific humpback dolphins from South China waters. Marine Pollution Bulletin, 2005, 50(12): 1713-1719 |
[30] | 黄健生. 中华白海豚(Sousa chinensis)组织中多氯联苯的研究. 海洋与湖沼, 2008, 39(5): 462-468 |
[31] | 黄宗国, 刘文华,廖文卓.厦门中华白海豚的重金属含量. 海洋环境科学, 1999, 18(1): 9-12 |
[32] | 邓超冰, 廉雪琼.北海海域中华白海豚体内重金属含量. 海洋环境科学, 2003, 22(2): 53-55 |
[33] | 边学森, 冉春丽, 贡小清, 等.厦门海域两头中华白海豚体内微量元素的积累. 水生生物学报, 2007, 31(3): 312-318 |
[34] | 雷富, 陈宪云, 张荣灿, 等.北部湾近岸海域夏季海洋环境质量评价. 广西科学, 2014, 21(1): 84-88 |
[35] | 何祥英. 北部湾防城港近岸海域海水环境参数变化与水质状况评价. 广西科学院学报, 2013, 28(4): 293-297 |
[36] | 王志峰, 王建春, 程凤莲, 等.北部湾潮间带沉积物中重金属和多氯联苯的分布特征及生态风险评价. 环境化学, 2012, 31(9): 1293-1302 |
[37] | 王艳, 方展强, 周海云.北部湾海域江豚体内有机氯农药和多氯联苯的含量及分布. 海洋环境科学, 2008, 27(4): 343-347 |
[38] | 潘文石, 龙玉, 陆宏毅, 等. 钦州的白海豚.北京: 北京大学出版社, 2013 |
[39] | 黄鹄, 胡自宁, 陈新庚, 等.基于遥感和 GIS 相结合的广西海岸线时空变化特征分析. 热带海洋学报, 2006, 25(1): 66-70 |
[40] | Zhou K Y, Xu X R, Tian C.Distribution and abun-dance of Indo-Pacific humpback dolphins in Leizhou Bay, China. New Zealand Journal of Zoology, 2007, 34(1): 35-42 |
[41] | Canadas A, Sagarminaga R, De Stephanis R, et al.Habitat preference modelling as a conservation took proposals for marine protected areas for cetaceans in southern Spanish waters. Aquatic Conservation-Marine and Freshwater Ecosystems, 2005, 15(5): 495-521 |
[42] | Syfert M M, Smith M J, Coomes D A.The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. Plos One, 2013, 8(2): e55158 |
[43] | Kramer-Schadt S, Niedballa J, Pilgrim J D, et al.The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distribu-tions, 2013, 19(11): 1366-1379 |
[44] | Dormann F C, McPherson M J, Araújo B M, et al., Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30(5): 609-628 |
[45] | Warren D L, Glor R E, Turelli M.ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33(3): 607-611 |
[46] | Liu C, Berry P M, Dawson T P, et al.Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 2005, 28(3): 385-393 |
[47] | Hanley J,McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143: 29-36 |
[48] | Howmer D, Lemeshow S.Applied logistic regression. New York: JohnWiley &Sons Inc, 1989 |
[49] | Yackulic C B, Chandler R, Zipkin E F, et al.Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 2013, 4(3): 236-243 |
[50] | Phillips S J, Dudik M, Elith J, et al.Sample selection bias and presence-only distribution models: implica-tions for background and pseudo-absence data. Eco-logical Applications, 2009, 19(1): 181-197 |
[51] | Sastre P, Lobo J M.Taxonomist survey biases and the unveiling of biodiversity patterns. Biological Conser-vation, 2009, 142(2): 462-467 |
[52] | 周伟华, 袁翔城, 霍文毅, 等. 长江口邻域叶绿素 a 和初级生产力的分布. 海洋学报(中文版), 2004, 3: 143-150 |
[53] | Ross G J, Heinsohn G E, Cockcroft V.Humpback dolphins Sousa chinensis(Osbeck, 1765), Sousa plum- bea , 1994, 5: 23-42 |
[54] | Jefferson T A, Karczmarski L.Sousa chinensis. Mam-malian Species, 2001: 655: 1-9 |
[55] | 刘宣. 中华白海豚(Sousa chinensis)的栖息地选择[D]. 广州: 华南师范大学, 2007 |
[56] | Hung S K.Habitat use of Indo-Pacific humpback dolphins (Sousa chinensis) in Hong Kong [D]. Hong Kong: University of Hong Kong, 2008 |
[57] | Chen T, Hung S K, Qiu Y S, et al.Distribution, abundance, and individual movements of Indo-Pacific humpback dolphins(Sousa chinensis) in the Pearl River Estuary, China. Mammalia, 2010, 74(2): 117-125 |
[58] | Parra G J.Resource partitioning in sympatric del-phinids: space use and habitat preferences of Austra-lian snubfin and Indo-Pacific humpback dolphins. Journal of Animal Ecology, 2006, 75(4): 862-874 |
[59] | Parra G J, Jedensjö M.Feeding habits of Australian Snubfin (Orcaella heinsohni) and Indo-Pacific hump-back dolphins (Sousa chinensis)[R]. Project Report to the Great Barrier Reef Marine Park Authority, Townsville and Reef & Rainforest Research Centre Limited. Cairns, 2009 |
[60] | Barros N B, Jefferson T A, Parsons E CM.Feeding Habits of Indo-Pacific Humpback Dolphins(Sousa chinensis) Stranded in Hong Kong. Aquatic Mam-mals, 2004, 30: 179-188 |
[61] | Wang W.Biology of Sousa chinensis in Xiamen Harbour // Conference on conservation of marine mammals by Fujian, Hong Kong [SIC] and Taiwan.Xiamen, 1995: 1-40 |
[62] | Barros N, Cockcroft V G.Prey of humpback dolphins(Sousa plumbea) stranded in eastern Cape Province, South Africa. Aquatic Mammals, 1991, 17(3): 134-136 |
[63] | Wang W.Preliminary observations on Sotalia sinensis off the coast of Xiamen. Newsletter of the Fujian Fisheries Society, 1965, 3(4): 16-21 |
[64] | Chen T, Qiu Y, Jia X, et al.Distribution and group dynamics of Indo-Pacific humpback dolphins(Sousa chinensis) in the western Pearl River Estuary, China. Mammalian Biology-Zeitschrift für Säugetierkunde, 2011, 76(1): 93-96 |
[65] | Fung C, Zheng G, Connell D, et al.Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China. Marine Pollution Bulletin, 2005, 50(10): 1036-1049 |
[66] | Wu Y L, Shi J C, Zheng G J, et al.Evaluation of organochlorine contamination in Indo-Pacific hump-back dolphins(Sousa chinensis) from the Pearl River Estuary, China. Science of the Total Environment, 2013, 444: 423-429 |
[67] | Cagnazzi D, Fossi M C, Parra G J, et al.Anthropo-genic contaminants in Indo-Pacific humpback and Australian snubfin dolphins from the central and southern Great Barrier Reef. Environmental Pollution, 2013, 182: 490-494 |
[68] | Hung C L H, Xu Y, Lam J C W, et al. An assessment of the risks associated with polychlorinated biphenyls found in the stomach contents of stranded Indo-Pacific humpback dolphins(Sousa chinensis) and fin-less porpoises, Chemosphere2006, 63(5): 845-852 |
[69] | Hung C L H, Xu Y, Lam J C W, et al. A preliminary risk assessment of organochlorines accumulated in fish to the Indo-Pacific humpback dolphin(Sousa chinensis) in the Northwestern waters of Hong Kong. Environmental Pollution, 2006, 144(1): 190-196 |
[70] | Parsons E C M. Trace metal pollution in Hong Kong: Implications for the health of Hong Kong’s Indo-Pacific hump-backed dolphins(Sousa chinensis). The Science of The Total Environment, 1998, 214: 175-184 |
[71] | 陈炳耀, 顾舒荣, 翟飞飞, 等.厦门中华白海豚体内微量元素的初步分析. 动物学杂志, 2007, 42(3): 102-105 |
[1] | 冯振东, 雷涛, 张善发, 张丽娟, 丁凌云, 陶虎春. 垃圾焚烧飞灰中重金属的传统与生物电沉积联用技术研究[J]. 北京大学学报自然科学版, 2022, 58(4): 673-679. |
[2] | 乔爽, 王婷, 张倩, 刘昕曜, 赵梦瑶. 长江源区重金属分布特征及生态风险评价[J]. 北京大学学报自然科学版, 2022, 58(2): 297-307. |
[3] | 张海军, 史本宁, 焦学尧, 吴海轮, 周琳, 沈小雪, 李瑞利. 深圳近海环境重金属空间分布特征与风险评价[J]. 北京大学学报自然科学版, 2021, 57(4): 679-690. |
[4] | 张倩, 刘湘伟, 税勇, 王婷. 黄河上游重金属元素分布特征及生态风险评价[J]. 北京大学学报自然科学版, 2021, 57(2): 333-340. |
[5] | 郭利芳, 迟姚玲, 赵华章. 新型复合絮凝剂对疏浚底泥脱水和重金属固化的研究[J]. 北京大学学报自然科学版, 2019, 55(2): 329-334. |
[6] | 刘思叶, 田原, 冯雨宁, 庄育龙. 游客微博主题情感分析方法比较研究[J]. 北京大学学报自然科学版, 2018, 54(4): 687-692. |
[7] | 程珊珊, 沈小雪, 柴民伟,李瑞利. 深圳湾红树林湿地不同生境类型沉积物的重金属分布特征及其生态风险评价[J]. 北京大学学报(自然科学版), 2018, 54(2): 415-425. |
[8] | 牛志远, 沈小雪, 柴民伟, 徐华林, 李瑞利, 邱国玉. 深圳湾福田红树林区水环境质量时空变化特征[J]. 北京大学学报(自然科学版), 2018, 54(1): 137-145. |
[9] | 李梦琳, 温丽丽, 王琮禾, 韩凌, 孙卫玲. 中国与欧盟金属产量及工业废水中重金属污染物排放区域和行业分布变化研究[J]. 北京大学学报自然科学版, 2017, 53(6): 1053-1067. |
[10] | 陈亚东, 洪宇, 王潇斌, 杨雪蓉, 姚建民, 朱巧明. 融合多模型与高置信度词典的事件线索检测[J]. 北京大学学报自然科学版, 2017, 53(3): 412-420. |
[11] | 冯秋园, 吴桐, 万祎, 刘学勤, 刘永. 持久性有机污染物(POPs)在水生生态系统中的环境行为[J]. 北京大学学报自然科学版, 2017, 53(3): 588-596. |
[12] | 王楠, 徐金安, 明芳, 陈钰枫, 张玉洁. 融合语态特征的日英层次短语翻译模型[J]. 北京大学学报自然科学版, 2017, 53(2): 305-313. |
[13] | 杨金水, 杨扬, 孙良明, 刘伟杰, 曾远, 邓春萍, 邢冠岚, 袁红莉. 铅锌矿区土壤真菌响应重金属污染的群落组成变化[J]. 北京大学学报自然科学版, 2017, 53(2): 387-396. |
[14] | 杨诗琴, 郝瑞霞, 吴沣, 姜源. 德兴铜矿地区土壤微生物的分布特征研究[J]. 北京大学学报(自然科学版), 2016, 52(2): 287-294. |
[15] | 杨振兴;田从魁;党晨原;常方;倪晋仁. 真菌对重金属Pb(Ⅱ), Cd(Ⅱ), As(Ⅲ)和Cr(Ⅵ)耐受性的比较研究[J]. 北京大学学报(自然科学版), 2015, 51(4): 667-676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||