[1] |
王连峰, 蔡延江, 解宏图. 冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系. 应用生态学报, 2007, 18(10): 2361-2367
|
[2] |
Cheng G, Wu T.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 2007, 112(F2): 93-104
|
[3] |
Zimov S, Schuur E, Chapin F.Permafrost and the global carbon budget. Nature, 2006, 312: 1612-1613
|
[4] |
王学佳, 杨梅学, 万国宁. 藏北高原D105点土壤冻融状况与温湿特征分析. 冰川冻土, 2012, 34(1): 56-62
|
[5] |
杨梅学, 姚檀栋, 勾晓华. 青藏公路沿线土壤的冻融过程及水热分布特征. 自然科学进展, 2000, 10(5): 443-450
|
[6] |
刘帅, 于贵瑞, 浅沼顺, 等. 蒙古高原中部草地土壤冻融过程及土壤含水量分布. 土壤学报, 2009, 46(1): 46-50
|
[7] |
Sushama L, Laprise R, Caya D, et al.An RCM projection of soil thermal and moisture regimes for North American permafrost zones. Geophysical Research Letters, 2007, 34(20): 891-895
|
[8] |
Iijima Y, Fedorov A N, Park H, et al.Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permafrost and Periglacial Processes, 2010, 21(1): 30-41
|
[9] |
Li X, Jin R, Pan X D, et al.Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau. International Journal of Applied Earth Obser-vation and Geoinformation, 2012, 17(7): 33-42
|
[10] |
常宗强, 马亚丽, 刘蔚, 等. 土壤冻融过程对祁连山森林土壤碳氮的影响. 冰川冻土, 2014, 36(1): 200-206
|
[11] |
伍星, 沈珍瑶. 冻融作用对土壤温室气体产生与排放的影响. 生态学杂志, 2010, 29(7): 1432-1439
|
[12] |
Hansson K, Simunek J, Mizoguchi M, et al.Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications. Vadose Zone Journal, 2004, 3(2): 693-704
|
[13] |
Radke J K, Berry E C.Soil water and solute movement and bulk density changes in repacked soil columns as a result of freezing and thawing under field conditions. Soil Science, 1998, 163(8): 611-624
|
[14] |
Oztas T, Fayetorbay F.Effect of freezing and thawing processes on soil aggregate stability. Catena, 52(1): 1-8
|
[15] |
Van B E, Prévost D, Pelletier F.Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil. Soil Science Society of America Journal, 2000, 64(5): 1638-1643
|
[16] |
Mastepanov M, Sigsgaard C, Dlugokencky E J.Large tundra methane burst during onset of freezing. Nature, 2008, 456(4): 628-630
|
[17] |
Song W M, Wang H, Wang G S, et al.Methane emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of non-growing season. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1475-1490
|
[18] |
蒲健辰, 姚檀栋, 王宁练, 等. 近百年来青藏高原冰川的进退变化. 冰川冻土, 2004, 26(5): 517-522
|
[19] |
周幼吾, 郭东信, 邱国庆, 等. 中国冻土. 北京:科学出版社, 2000: 44-79
|
[20] |
Yao T, Shi Y, Thompson L G.High resolution record of paleoclimate since the Little Ice Age from the Tibetan ice cores. Quaternary International, 1997, 37(2): 19-23
|
[21] |
Liu X, Chen B.Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742
|
[22] |
Duan A, Wu G, Zhang Q, et al.New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 2006, 51(11): 1396-1400
|
[23] |
Li L, Yang S, Wang Z, et al.Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 2010, 42(4): 449-457
|
[24] |
Chen H, Zhu QA, Peng CH, et al.The impacts of climate change and human activities on biogeo-chemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955
|
[25] |
Piao S, Ciais P, Huang Y, et al.The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43-51
|
[26] |
王澄海, 董文杰, 韦志刚. 青藏高原季节性冻土年际变化的异常特征. 地理学报, 2001, 56(5): 523-530
|
[27] |
高荣, 韦志刚, 董文杰, 等. 20 世纪后期青藏高原积雪和冻土的变化特征及其对气候变化的响应. 高原气象, 2003, 22( 2): 191-196
|
[28] |
李林, 朱西德, 汪青春, 等. 青海高原冻土退化的若干事实揭示. 冰川冻土, 2005, 27(3): 320-328
|
[29] |
赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009
|
[30] |
Zhao X Q, Zhou X M.Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio, 1999, 28(8): 642-647
|
[31] |
Wang Y H, Liu H Y, Chung H, et al.Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Global Biogeochemistry Cycle, 2014, 28(10): 1081-1095
|
[32] |
Wang S P, Duan J C, Xu G P, et al.Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376
|
[33] |
王绍令, 赵秀锋, 郭东信, 等. 青藏高原冻土对气候变化的响应. 冰川冻土, 1996, 18(增刊 1): 157-165
|
[34] |
高荣, 韦志刚, 董文杰. 青藏高原土壤冻结始日和终日的年际变化. 冰川冻土, 2003, 25(1): 49-54
|
[35] |
马柱国, 黄刚, 甘文强, 等. 近代中国北方干湿变化趋势的多时段特征. 大气科学, 2005, 29(5): 671-681
|
[36] |
李新周, 马柱国, 刘晓东. 中国北方干旱化年代际特征与大气环流的关系. 大气科学, 2006, 30(2): 277-284
|
[37] |
李英年, 关定国, 赵亮, 等. 海北高寒草甸的季节冻土及在植被生产力形成过程中的作用. 冰川冻土, 2005, 27(3): 311-319
|
[38] |
吴青柏, 沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 2003, 25(3): 250-255
|
[39] |
Kato T, Hirota M, Tang Y, et al.Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobrasia meadow on the Qinghai-Tibetan plateau. Soil Biology & Biochemistry, 2005, 37(10): 1966-1969
|
[40] |
Teepe R, Ludwig B.Variability of CO2 and N2O emissions during freeze-thaw cycles: results of model experiments off undisturbed forest soil cores. Journal of Plant Nutrition and Soil Science, 2004, 167(2): 153-159
|
[41] |
Preme A, Christensen S.Natural perturbations, drying rewetting and freeze thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology & Biochemistry, 2001, 33(33): 2083-2091
|
[42] |
Müller C, Martin M, Stevens R J, et al.Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology & Biochemistry, 2002, 34(9): 1325-133l
|
[43] |
蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和 N2O 排放的影响研究进展. 土壤学报, 2013, 50(5): 1032-1042
|
[44] |
Fitzhugh R D, Driscoll C T, Groffman P M, et al.Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 2001, 56(2): 215-238
|
[45] |
Herrmann A, Witter E.Sources of C and N contri-buting to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry, 2002, 34(10): 1495-1505
|
[46] |
Shilpi S, Zsofia S, Rolf S, et al.Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology, 2006, 72(3): 2148-2154
|