吴金勇1,2,赵勇1,王一科3,袁誉乐1,张兴2
WU Jinyong1,2, ZHAO Yong1, WANG Yike3, YUAN Yule1, ZHANG Xing2
摘要: 针对复杂场景中的人车分类问题, 提出一种基于多粒度感知SVM (support vector machine)的复杂场景人车分类方法。该方法首先对视频场景进行运动区域分析, 结合角点检测方法提取运动区域视觉感知信息, 在时空域中采用Kalman滤波将感知信息进行关联推理, 去除噪声干扰。 再以运动区域质心点为中心, 构造目标的多粒度感知特征, 最后构造2级SVM分类器, 将目标多粒度感知特征向量集输入SVM分类器进行训练及分类, 得到人车分类结果输出。实验结果表明, 该方法取得了良好的分类效果, 人、车全天候平均分类正确率分别达到93.6%以上, 能有效避免光照、色彩、目标大小等变化导致的误分类问题, 适用于智能交通视频的人车分类应用。
中图分类号: