北京大学学报(自然科学版)

单李群齐性空间中的相交理论

包志强   

  1. 北京大学数学学院数学系,北京,100871
  • 收稿日期:1998-04-01 出版日期:1999-05-20 发布日期:1999-05-20

Intersection Theory on Homogeneous Spaces of Simple Lie Group

BAO Zhiqiang   

  1. Department of Mathematics, School of Mathematical Sciences, Peking University, Beijing, 100871
  • Received:1998-04-01 Online:1999-05-20 Published:1999-05-20

摘要: 考虑齐性空间Un/Tn的整系数上同调环H*(Un/Tn , Z)。它是n元多项式环的一个商环。特别地,商环的d=dimUn/Tn次齐次部分对应于顶维上同调群Z,即每个d次齐次多项式 f都对应于一个整数 χ(f)。本文具体计算出了此对应。在几何上,这一对应给出了到Un/Tn的连续映射的相交数的计算方法。同样的方法也适用于Spn/Tn上的相交理论的研究。

关键词: 齐性空间, 相交理论, 相交数

Abstract: Consider H*(Un/Tn, Z), the integral cohomology ring of homogeneous space Un/Tn. It is a quotient ring of the polynomial ring in n variables. Particularly, the homogeneous part with degree d=dimUn/Tn corresponds to the highest dimensional cohomology group Z, i.e., each degree d homogeneous polynomial f corresponds to an integer χ(f). The present article computes this correspondence explicitly. The connections with the intersection theory of the manifold Un/Tn are also discussed. Similar result applies to the homogeneous space Spn/Tn.

Key words: homogeneous space, intersection theory, intersection number

中图分类号: