北京大学学报自然科学版 ›› 2022, Vol. 58 ›› Issue (3): 553-564.DOI: 10.13209/j.0479-8023.2022.024

上一篇    下一篇

基于污染物浓度设计值和相对响应因子的空气质量达标控制情景预测方法——以四川省“十四五”规划为例

黄冉1,†, 王馨陆1, 王聪2, 杜云松3, 晏波1, 张雯娴1, 罗彬2, 张巍3, 胡泳涛4   

  1. 1. 杭州矮马科技有限公司, 杭州 311121 2. 四川省环境政策研究与规划院, 成都 610041 3. 四川省生态环境监测总站, 成都 610091 4. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332
  • 收稿日期:2021-05-13 修回日期:2021-07-15 出版日期:2022-05-20 发布日期:2022-05-20
  • 通讯作者: 黄冉, E-mail: ranhuang2019(at)163.com
  • 基金资助:
    国家重点研发计划(2018YFC0214004)和矮马科技自主研发项目(研字 2016-006)资助 

Future Year Air Quality Attainment Prediction Method Based on Design Value and Relative Response Factor: A Case Study Focusing on Implementation Planning of the 14th Five-Year Plan in Sichuan Province 

HUANG Ran1,†, WANG Xinlu1, WANG Cong2, DU Yunsong3, YAN Bo1, ZHANG Wenxian1, LUO Bin2, ZHANG Wei3, HU Yongtao4   

  1. 1. Hangzhou AiMa Technologies, Hangzhou 311121 2. Sichuan Academy of Environmental policy and planning, Chengdu 610041 3. Sichuan Bio-Environmental Monitoring Center, Chengdu 610091 4. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332
  • Received:2021-05-13 Revised:2021-07-15 Online:2022-05-20 Published:2022-05-20
  • Contact: HUANG Ran, E-mail: ranhuang2019(at)163.com

摘要:

提出一种基于污染物浓度设计值和相对响应因子的空气质量达标规划预测方法。首先通过数值模拟, 评估最近5年年际气象条件差异对空气污染物浓度的影响, 筛选出最接近5年平均气象条件的一年作为基准年, 将该基准年气象场和各排放情景作为输入进行空气质量模拟, 降低气象条件年际差异对未来污染物浓度水平预测的影响。然后, 基于基准情景和控制情景在不同排放水平的空气质量模式模拟结果, 将控制情景相对于基准情景的污染物模拟浓度的变化比例(相对响应因子)与污染物浓度设计值相结合, 进行控制情景的空气质量水平预测和达标分析。以四川省为例, 围绕相关减排政策, 设计多个虚拟控制情景, 对全省城市未来空气质量进行情景预测和达标分析, 为“十四五”空气质量规划落地策略的制定提供科学支撑。

关键词: “十四五”规划, 控制情景预测, 空气质量达标规划, 相对响应因子, 设计值

Abstract:

A novel future year air quality attainment prediction method, which is based on the design value of air pollutant concentration and relative response factor (RRF), has been developed to predict pollutant concentration levels under different emission control scenarios. The method first conducts numerical simulations to evaluate the effect of annual meteorological differences among the recent five years on the concentrations of air pollutants. The “typical” year, of which the meteorological condition is the closest to the five-year average, is selected as the base year. The air quality is simulated with the meteorological field and emission scenarios of the base year as the input of model so as to reduce the influence of inter-annual differences in meteorological conditions on the prediction of future pollutant concentration levels. Then it applies the regional air quality model for multiple times to simulate the pollutant concentration levels with different emission inputs that represent base and control emission scenarios. Lastly, it multiplies the design value of pollutant concentrations with the RRF derived from the ratios between the simulated concentrations of the control and base scenarios, to predict the future pollutant levels and to conduct air quality attainment tests. The method is applied to conduct scenario predictions and air quality attainment tests for the cities in Sichuan Province by designing multiple virtual air pollutant emission control scenarios based on the relevant emission reduction policies. The air quality attainment prediction results under different control scenarios, which aim to accomplish the goals of the 14th Five-Year Plan on air quality, can be useful for refining the local implementation strategies for control of air pollution.

Key words: the 14th Five-Year Plan, air quality attainment prediction, air quality attainment implementation planning, relative response factor (RRF), design value