北京大学学报自然科学版 ›› 2019, Vol. 55 ›› Issue (1): 29-36.DOI: 10.13209/j.0479-8023.2018.064
张庆林, 杜嘉晨, 徐睿峰†
ZHANG Qinglin, DU Jiachen, XU Ruifeng†
摘要:
为了避免现有讽刺识别方法的性能会受训练数据缺乏的影响, 在使用有限标注数据训练的注意力卷积神经网络基础上, 提出一种对抗学习框架, 该框架包含两种互补的对抗学习方法。首先, 提出一种基于对抗样本的学习方法, 应用对抗生成的样本参与模型训练, 以期提高分类器的鲁棒性和泛化能力。进而, 研究基于领域迁移的对抗学习方法, 以期利用跨领域讽刺表达数据, 改善模型在目标领域上的识别性能。在3个讽刺数据集上的实验结果表明, 两种对抗学习方法都能提高讽刺识别的性能, 其中基于领域迁移方法的性能提升更显著; 同时结合两种对抗学习方法能够进一步提高讽刺识别性能。