[1] |
Papineni K, Roukos S, Ward T, et al. BLEU: a method for automatic evaluation of machine trans-lation // Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Phila-delphia, 2002: 311-318
|
[2] |
Doddington G.Automatic evaluation of machine translation quality using n-gram co-occurrence statistics // Proceedings of the second international conference on Human Language Technology Re-search (HLT’02). San Diego, 2002: 138-145
|
[3] |
Banerjee S, Lavie A.METEOR: an automatic metric for MT evaluation with improved correlation with human judgments // Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summa-rization. Ann Arbor, 2005: 65-72
|
[4] |
Snover M, Dorr B, Schwartz R, et al.A study of translation edit rate with targeted human annotation // Proceedings of Association for Machine Trans-lation in the Americas. Cambridge, 2006: 223-231
|
[5] |
李茂西, 江爱文, 王明文. 基于ListMLE排序学习方法的机器译文自动评价研究. 中文信息学报, 2013, 27(4): 22-29
|
[6] |
Li M, Wang M, Li H, et al.Modeling monolingual character alignment for automatic evaluation of Chinese translation. ACM Transactions on Asian and Low—Resource Language Information Processing, 2016, 15(3): 1-16
|
[7] |
Denkowski M, Lavie A.Meteor universal: language specific translation evaluation for any target language // Proceedings of the Ninth Workshop on Statistical Machine Translation (WMT). Baltimore, 2014: 376-380
|
[8] |
Snover M, Madnani N, Dorr B, et al.TER-Plus: paraphrase, semantic, and alignment enhancements to translation edit rate. Machine Translation, 2009, 23(2): 117-127
|
[9] |
翁贞, 李茂西, 王明文. 利用Markov 网络抽取复述增强机器译文自动评价方法. 中文信息学报, 2015, 29(5): 136-142
|
[10] |
Moore R C, Lewis W.Intelligent selection of lan-guage model training data // Proceedings of the ACL 2010 Conference. Uppsala, 2010: 220-224
|
[11] |
Axelrod A, He X, Gao J.Domain adaptation via pseudo in-domain data selection // Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, 2011: 355-362
|
[12] |
赵世奇, 刘挺, 李生. 复述技术研究. 软件学报, 2009, 20(8): 2124-2137
|
[13] |
李莉, 刘知远, 孙茂松. 基于中英平行专利语料的短语复述自动抽取研究. 中文信息学报, 2013, 27(6): 151-157
|
[14] |
胡金铭, 史晓东, 苏劲松, 等. 引入复述技术的统计机器翻译研究综述. 智能系统学报, 2013, 8(3): 199-207
|
[15] |
苏晨, 张玉洁, 郭振, 等. 使用源语言复述知识改善统计机器翻译性能. 北京大学学报: 自然科学版, 2015, 51(2): 342-348
|
[16] |
Barzilay R, McKeown K R. Extracting paraphrases from a parallel corpus // Proceedings of 39th Annual Meeting of the Association for Computational Ling-uistics. Toulouse, 2001: 50-57
|
[17] |
Bannard C, Callison-Burch C.Paraphrasing with Bilingual Parallel Corpora // Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Ann Arbor, 2005: 597-604
|
[18] |
Shinyama Y, Sekine S, Sudo K.Automatic para-phrase acquisition from news articles // Proceedings of the second international conference on Human Language Technology Research. 2002: 313-318
|
[19] |
Barzilay R, Lee L.Learning to paraphrase: an unsu-pervised approach using multiple-sequence alignment// Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, 2003: 16-23
|
[20] |
Pavlick E, Ganitkevitch J, Chan T P, et al.Domain-specific paraphrase extraction // Proceedings of the 53rd Annual Meeting of the Association for Com-putational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, 2015: 57-62
|
[21] |
洪欢, 王明文, 万剑怡, 等. 基于迭代方法的多层Markov 网络信息检索模型. 中文信息学报, 2013, 27(5): 122-128
|
[22] |
Bojar O, Buck C, Federmann C, et al.Findings of the 2014 workshop on statistical machine translation // Proceedings of the Ninth Workshop on Statistical Machine Translation. Baltimore, 2014: 12-58
|
[23] |
Bojar O, Chatterjee R, Federmann C, et al.Findings of the 2015 workshop on statistical machine trans-lation // Proceedings of the Tenth Workshop on Statistical Machine Translation. Lisbon, 2015: 1-46
|
[24] |
Zhang L, Weng Z, Xiao W, et al.Extract domain-specific paraphrase from monolingual corpus for automatic evaluation of machine translation // Pro-ceedings of the First Conference on Machine Translation. Berlin, 2016: 511-517
|