北京大学学报自然科学版 ›› 2017, Vol. 53 ›› Issue (2): 314-320.DOI: 10.13209/j.0479-8023.2016.112

上一篇    下一篇

基于灰色关联分析的推荐信任评估方法

赵斌1,2,3,(), 何泾沙1, 张伊璇1, 翟鹏1,2   

  1. 1. 北京工业大学软件学院, 北京 100124
    2. 济宁学院计算机科学系, 曲阜 273155
    3. 数字出版技术国家重点实验室(筹), 北京 100871;
  • 收稿日期:2015-10-04 修回日期:2016-07-20 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 赵斌
  • 基金资助:
    国家自然科学基金(61272500)、863 计划(2015AA011103)、北京自然科学基金(4142008)、山东省自然科学基金(ZR2013FQ024)和北大方正集团有限公司数字出版技术国家重点实验室开放课题资助

The Method of Recommended Trust Evaluation Based on Grey Correlation Analysis

Bin ZHAO1,2,3,(), Jingsha HE1, Yixuan ZHANG1, Peng ZHAI1,2   

  1. 1. School of Software Engineering, Beijing University of Technology, Beijing 100124
    2. Department of Computer Science, Jining University, Qufu 273155
    3. State Key Laboratory of Digital Publishing Technology, Peking University Founder Group Co. Ltd, Beijing 100871
  • Received:2015-10-04 Revised:2016-07-20 Online:2017-03-20 Published:2017-03-20
  • Contact: Bin ZHAO

摘要:

为了解决开放式网络访问控制中利用第三方实体的推荐权重合理评估推荐信任问题,借鉴灰色系统理论, 提出基于灰色关联分析的推荐信任评估方法。根据开放网络中各实体间发展态势的相似或相异程度, 评估各实体之间关联的紧密程度和推荐权重。算例和仿真实验表明, 推荐实体的推荐权重计算得到的结果与实际情况相符, 该方法能够保证推荐信任评估决策的有效性和客观性。

关键词: 开放式网络, 访问控制, 信任评估, 灰色关联分析, 推荐实体

Abstract:

In order to solve the problem of objectively evaluating recommendation trust using the weight of third party’s recommendation in the development of a solution for access control in open networks, a method of recommended trust evaluation based on the gray correlation analysis is proposed, which uses grey correclaton analysis theory between the entities of the development trend of the different degree to evaluate recommended weight in open network. Examples and simulation experiments show that results derived from the computation of the weight of the recommending entity is consistent with the actual results, which helps to verify that the proposed method can ensure the effectiveness and objectiveness of the evaluation decision on recommendation trust.

Key words: open network, access control, trust evaluation, grey relational analysis, recommended entity

中图分类号: