摘要:
针对基于短语的统计机器翻译使用有限的语义知识, 导致长距离的动宾短语对翻译质量不高的问题, 提出基于动词选择偏向性的翻译模型, 引入动词对宾语的语义约束信息, 为动词找到合适的宾语翻译。首先使用条件概率方法, 训练动词对宾语的选择偏向性, 然后将选择偏向性作为一个新特征, 集成到基于短语的翻译系统中。在大规模测试数据集上完成汉语到英语的翻译, 实验结果表明, 基于选择偏向性的翻译模型能够很好地捕获长距离的语义依赖关系, 从而提高译文质量。
中图分类号:
唐海庆, 熊德意. 基于选择偏向性的统计机器翻译模型[J]. 北京大学学报(自然科学版), 2016, 52(1): 127-133.
TANG Haiqing, XIONG Deyi. A Selectional Preference Based Translation Model for SMT[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(1): 127-133.