[1] Boer G J. Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn, 1993, 8: 225–239
[2] Allen M R, Ingram W J. Constraints on future changes in climate and the hydrological cycle. Nature, 2002, 419: 224–232
[3] Allan R P, Soden B J. Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett, 34: L18705
[4] Wentz, F J, Ricciardulli L, Hilburn K, et al. How much more rain will global warming bring?. Science, 2007, 317: 233–235
[5] Liepert B G, Previdi M. Do models and observations disagree on the rainfall response to global warming?. J Clim, 2009, 22: 3156–3166
[6] Jones A, Haywood J M, Boucher O. Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J Geophys Res, 2007, 112: D20211
[7] Andrews T, Forster P M, Gregory J M. A surface energy perspective on climate change. J Clim, 2009, 22: 2557–2570
[8] Bala G, Caldeira K, Nemani R. Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn, 2010, 35: 423–434
[9] Cao Long, Bala G, Caldeira K. Why is there a shortterm increase in global precipitation in response to diminished forcing?. Geophys Res Lett, 2011, 38: L06703
[10] Andrews T, Forster P M, Boucher O, et al. Precipitation, radiative forcing and global temperature change. Geophys Res Lett, 2010, 37: L14701
[11] Hansen J, Sato M, Ruedy R, et al. Efficacy of climate forcings. J Geophys Res Atmos, 2005, 110: D18104
[12] Gregory J M, Ingram W J, Palmer M A, et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett, 2004, 31: L03205
[13] Previdi M. Radiative feedbacks on global precipitation. Environ Res Lett, 2010, 5: 025211
[14] Lorenz D J, DeWeaver E T, Vimont D J. Evaporation change and global warming: the role of net radiation and relative humidity. J Geophys Res, 2010, 115: D20118
[15] Wu P, Wood R, Ridley J, et al. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys Res Lett, 2010, 37: L12705
[16] O’Gorman P A, Schneider T. The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim, 2008, 21: 3815–3832
[17] Stephens G L, Ellis T D. Controls of global-mean precipitation increases in global warming GCM experiments. J Clim, 2008, 21: 6141–6155
[18] O’Gorman P A, Allan R P, Byrne M P, et al. Energetic constraints on precipitation under climate change. Surv Geophys, 2012, 33: 585?608
[19] Delworth T L, Broccoli A J, Rosati A, et al. GFDL’s CM2 global coupled climate models. Part Ⅰ : formulation and simulation characteristics. J Climate, 2006, 19(5): 643?674
[20] Wittenberg A T, Rosati A, Lau N, et al. GFDL’s CM2 global coupled climate models. Part Ⅲ : tropical pacific climate and ENSO. J Climate, 2006, 19(5): 698?722
[21] Held I M, Winton M, Takahashi K, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Climate, 2010, 23: 2418?2427
[22] Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emission. PNAS, 2009, 106(6): 1704?1709
[23] 陈晓龙, 周天军, 郭准. 影响气候系统模式温室气体敏感度的反馈过程: 基于FGOALS 模式的研究. 中国科学D 辑: 地球科学, 2014, 44(2): 322?332
[24] Held I M, Soden J S. Robust response of the hydrological cycle to global warming. J Climate, 2006, 19(21): 5686?5699
[25] Kitoh A, Endo H, Kumar K K, et al. Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos, 2013, 118: doi: 10.1002/jgrd.50258 |