Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2022, Vol. 58 ›› Issue (5): 801-807.DOI: 10.13209/j.0479-8023.2022.081
Previous Articles Next Articles
XU Pengtao, CAO Jian†, SUN Wenyu, LI Pu, WANG Yuan, ZHANG Xing†
Received:
Revised:
Online:
Published:
Contact:
徐鹏涛, 曹健†, 孙文宇, 李普, 王源, 张兴†
通讯作者:
基金资助:
Abstract:
Key words: convolutional neural network, layer pruning, fusible residual convolutional block, sparse training; image classification
摘要:
关键词: 卷积神经网络, 层剪枝, 可融合残差卷积块, 稀疏化训练, 图像分类
XU Pengtao, CAO Jian, SUN Wenyu, LI Pu, WANG Yuan, ZHANG Xing. Layer Pruning via Fusible Residual Convolutional Block for Deep Neural Networks[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(5): 801-807.
徐鹏涛, 曹健, 孙文宇, 李普, 王源, 张兴. 基于可融合残差卷积块的深度神经网络模型层剪枝方法[J]. 北京大学学报自然科学版, 2022, 58(5): 801-807.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2022.081
https://xbna.pku.edu.cn/EN/Y2022/V58/I5/801