Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2019, Vol. 55 ›› Issue (1): 1-7.DOI: 10.13209/j.0479-8023.2018.055
Previous Articles Next Articles
SUN Jiawei, LI Zhenghua†, CHEN Wenliang, ZHANG Min
Received:
Revised:
Online:
Published:
Contact:
孙佳伟, 李正华†, 陈文亮, 张民
通讯作者:
基金资助:
Abstract:
The authors propose a hypernym relation classification method based on word pattern, which can effectively alleviate the sparsity problem suffered by the traditional path-based method. Furthermore, this paper makes an effective combination of the path-based method and the distributional method via word pattern embedding. To demonstrate the effectiveness of the proposed approach, the authors manually annotated a Chinese hypernym dataset containing 12000 word pairs. The experimental results show that the proposed word pattern embedding approach is effective and can achieve an F1 score of 95.36%.
Key words: hypernym relation classification, word pattern, word embedding, word pattern embedding
摘要:
提出一种基于词模式的上下位关系分类方法, 可以有效地缓解传统的基于模式的分类方法存在的稀疏问题, 提高了关系分类的召回率。进一步地, 通过词模式嵌入, 将基于模式的方法与基于词嵌入的方法进行有效的融合。为了验证方法的有效性, 标注一个包含12000个汉语词语对的数据集。实验结果表明, 该词模式嵌入方法是有效的, F1值可以达到95.36%。
关键词: 上下位关系分类, 词模式, 词嵌入, 词模式嵌入
SUN Jiawei, LI Zhenghua, CHEN Wenliang, ZHANG Min. Hypernym Relation Classification Based on Word Pattern[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(1): 1-7.
孙佳伟, 李正华, 陈文亮, 张民. 基于词模式嵌入的词语上下位关系分类[J]. 北京大学学报自然科学版, 2019, 55(1): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2018.055
https://xbna.pku.edu.cn/EN/Y2019/V55/I1/1