Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2019, Vol. 55 ›› Issue (1): 1-7.DOI: 10.13209/j.0479-8023.2018.055

Previous Articles     Next Articles

Hypernym Relation Classification Based on Word Pattern

SUN Jiawei, LI Zhenghua, CHEN Wenliang, ZHANG Min   

  1. School of Computer Science and Technology, Soochow University, Suzhou 215006
  • Received:2018-04-15 Revised:2018-08-08 Online:2019-01-20 Published:2019-01-20
  • Contact: LI Zhenghua, E-mail: zhli13(at)suda.edu.cn

基于词模式嵌入的词语上下位关系分类

孙佳伟, 李正华, 陈文亮, 张民   

  1. 苏州大学计算机科学与技术学院, 苏州 215006
  • 通讯作者: 李正华, E-mail: zhli13(at)suda.edu.cn
  • 基金资助:
    国家自然科学基金(61876116, 61673289)和江苏省高校自然科学研究重大项目(16KJA520001)资助

Abstract:

The authors propose a hypernym relation classification method based on word pattern, which can effectively alleviate the sparsity problem suffered by the traditional path-based method. Furthermore, this paper makes an effective combination of the path-based method and the distributional method via word pattern embedding. To demonstrate the effectiveness of the proposed approach, the authors manually annotated a Chinese hypernym dataset containing 12000 word pairs. The experimental results show that the proposed word pattern embedding approach is effective and can achieve an F1 score of 95.36%.

Key words: hypernym relation classification, word pattern, word embedding, word pattern embedding

摘要:

提出一种基于词模式的上下位关系分类方法, 可以有效地缓解传统的基于模式的分类方法存在的稀疏问题, 提高了关系分类的召回率。进一步地, 通过词模式嵌入, 将基于模式的方法与基于词嵌入的方法进行有效的融合。为了验证方法的有效性, 标注一个包含12000个汉语词语对的数据集。实验结果表明, 该词模式嵌入方法是有效的, F1值可以达到95.36%。

关键词: 上下位关系分类, 词模式, 词嵌入, 词模式嵌入