Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2018, Vol. 54 ›› Issue (4): 801-806.DOI: 10.13209/j.0479-8023.2017.190

Previous Articles     Next Articles

Public’s Protective Response to Urban Air Pollution

XIA Tian1, XU Jianhua1,2,†   

  1. 1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871
    2. Center for Crisis Management Research, School of Public Policy and Management, Tsinghua University, Beijing 100084
  • Received:2017-04-08 Revised:2017-05-03 Online:2018-07-20 Published:2018-07-20
  • Contact: XU Jianhua, E-mail: jianhua.xu(at)pku.edu.cn

公众对城市大气污染的健康防护行为研究

夏田1, 徐建华1,2,†   

  1. 1. 北京大学环境科学与工程学院环境管理系, 北京 100871
    2. 清华大学公共管理学院应急管理研究基地, 北京 100084
  • 通讯作者: 徐建华, E-mail: jianhua.xu(at)pku.edu.cn
  • 基金资助:
    国家自然科学基金(71303013)和北京高等学校青年英才计划项目资助

Abstract:

From a social-psychological perspective, this paper studies people’s protective behavior in response to health risks posed by air pollution. A questionnaire survey was conducted in Haidian, Chaoyang, Xicheng and Fengtai Districts in Beijing, and a sample of 993 respondents based on quota sampling techniques was collected. Based on Health Belief Model, ordinary least square regression was used for examining determinants of protective behaviors. The key finding is that the predictors of the adaptation behavior are consistent with the basic constructs for explaining health protective behavior in the health domain, which are perceived level of risk, perceived barriers, and perceived effectiveness. The result supports the thought of borrowing knowledge from the health domain to the environmental domain in designing policy instruments to cope with environmental risks.

Key words: air pollution, health risk, behaviors, health belief model

摘要:

从社会心理学的角度, 研究公众对大气污染健康风险的防护行为。在北京市开展问卷调查, 对海淀、朝阳、西城、丰台4个区进行配额抽样, 共获得有效样本993份。基于健康信念模型, 通过线性回归模型分析防护行为强度的影响因素, 结果表明, 感知到的风险、感知到的行为障碍和感知到的行为有效性对大气污染健康防护行为的强度有显著影响, 该结论符合公共卫生服务领域解释健康防护行为的基本框架。研究结果可为借鉴公共卫生服务领域的知识进行环境领域的政策设计、解决环境风险问题的合理性提供依据。

关键词: 大气污染, 健康风险, 行为, 健康信念模型

CLC Number: