Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (2): 230-238.DOI: 10.13209/j.0479-8023.2017.030

• Orginal Article • Previous Articles     Next Articles

Improve Automatic Evaluation of Machine Translation Using Specific-Domain Paraphrase

Lilin ZHANG, Maoxi LI, Wenyan XIAO, Jianyi WAN, Mingwen WANG()   

  1. School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022
  • Received:2016-07-23 Revised:2016-09-23 Online:2017-03-20 Published:2017-03-20
  • Contact: Mingwen WANG

机器翻译自动评价中领域知识复述抽取研究

张丽林, 李茂西, 肖文艳, 万剑怡, 王明文()   

  1. 江西师范大学计算机信息工程学院, 南昌 330022
  • 通讯作者: 王明文
  • 基金资助:
    国家自然科学基金(61462044, 61462045, 61662031, 61562042)、江西省自然科学基金(20151BAB207025)和江西省教育厅科技项目(GJJ150352)资助

Abstract:

Since the paraphrase extracted from the general domain tends to cause paraphrase match deviation in the specific-domain automatic evaluation of machine translation, this paper proposes an approach exploited specific-domain paraphrase related to the test set to enhance automatic evaluation of machine translation. First, the K-means algorithm is utilized to cluster general-domain monolingual corpus, and the specific-domain training data via improved M-L approach is obtained. Then, the specific-domain paraphrase table is extracted from the training data by Markov network model. Finally, the extracted paraphrase table is applied to automatic MT evaluation metrics to improve word match. The experimental results on the dataset of WMT’14 Metrics task and WMT’15 Metrics task show that the METEOR metric and the TER metric using the specific-domain paraphrase table yield better performance than that using the general-domain paraphrase table.

Key words: paraphrase, automatic evaluation of machine translation, language model, Markov network, document clustering

摘要:

针对通用领域语料中抽取的复述在特定领域机器译文自动评价任务的应用中容易出现复述匹配偏差的问题, 提出采用抽取与测试领域相关的复述来提高机器译文自动评价的方法。首先将通用单语训练语料进行聚类, 并利用改进的M-L方法过滤, 得到特定领域训练语料, 然后在训练语料中利用Markov网络模型, 抽取特定领域复述表, 最后将此复述表应用在机器译文自动评价中, 以提高同义词和近义词的匹配精度。在WMT’14 Metrics task和WMT’15 Metrics task数据集上的实验结果表明, 利用领域知识抽取的复述能够增加自动评价方法METEOR和TER与人工评价的相关性。

关键词: 复述, 机器译文自动评价, 语言模型, Markov网络, 文档聚类

CLC Number: