Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2020, Vol. 56 ›› Issue (4): 614-628.DOI: 10.13209/j.0479-8023.2020.020

Previous Articles     Next Articles

Inversion Research of Rayleigh Wave Dispersion Curve Based on Fast Scalar Transfer Algorithm

DONG Zhikai1, DUAN Wensheng2, XIAO Chengwen2, HU Tianyue1,†, ZHANG Xianbing1,†   

  1. 1. School of Earth and Space Sciences, Peking University, Beijing 100871 2. Research Institute of Exploration and Development, Tarim Oilfield, PetroChina, Korla 841000
  • Received:2019-05-10 Revised:2019-06-30 Online:2020-07-20 Published:2020-07-20
  • Contact: HU Tianyue, E-mail: tianyue(at); ZHANG Xianbing, E-mail: zxb(at)


董智开1, 段文胜2, 肖承文2, 胡天跃1,†, 张献兵1,†   

  1. 1. 北京大学地球与空间科学学院, 北京 100871 2. 中国石油塔里木油田公司, 库尔勒 841000
  • 通讯作者: 胡天跃, E-mail: tianyue(at); 张献兵, E-mail: zxb(at)
  • 基金资助:


In order to improve the efficiency and accuracy of the inversion of Rayleigh wave dispersion curves near the surface, fast scalar transfer algorithm which has the characteristics of high computational efficiency is introduced to calculate the forward theoretical value of Rayleigh wave dispersion curve. The performances of genetic algorithm (GA), simulated annealing algorithm (SA) in the inversion of Rayleigh wave dispersion curves before and after adding linear constraints are compared. On this basis, linear constraints are added to GA and SA to improve the speed of convergence, and Monte Carlo method (MC) with fast computing speed is used to identify the types of formation as a supplementary means. Then the inversion results obtained by GA are taken as the initial state of SA as well as narrowing search scope appropriately, and this kind of joint inversion is carried out to overcome the premature problem of GA. Using the above method to calculate the three-layer model, noisecontaining data and actual model of the work area. The results show that the method above is efficient, accurate and stable, and it has strong ability of global optimization and anti-noise ability to a certain extent.

Key words: shallow surface, Rayleigh wave, dispersion curve, fast scalar transfer algorithm, nonlinear inversion


为了提高近地表瑞雷波频散曲线反演的效率和精度, 引入快速标量传递算法来计算瑞雷波频散曲线正演理论值。通过对比加入线性约束条件前后遗传算法(GA)与模拟退火法(SA)在反演瑞雷波频散曲线中的表现, 提出将计算速度快的蒙特卡洛法(MC)作为辅助手段来快速识别地层类型, 然后在GA和SA中加入线性约束条件来提高收敛速度, 并将GA得到的反演结果作为SA的初始状态, 同时适当地缩小搜索范围, 通过联合反演来克服GA的早熟问题。用上述方法计算和验证三层地层模型、含噪声数据以及工区实际模型, 结果表明该方法高效、准确、稳定性强, 有很强的全局寻优能力, 并具有一定的抗噪能力。

关键词: 浅地表, 瑞雷波, 频散曲线, 快速标量传递法, 非线性反演