Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (6): 1122-1131.DOI: 10.13209/j.0479-8023.2017.130
• Orginal Article • Previous Articles Next Articles
Qi WANG, Binwei WANG, Guangcai TAN, Nan XU()
Received:
2016-05-26
Revised:
2016-06-07
Online:
2017-11-20
Published:
2017-11-20
基金资助:
Qi WANG, Binwei WANG, Guangcai TAN, Nan XU. Single and Competitive Adsorption of Cu(Ⅱ), Pb(Ⅱ), Ni(Ⅱ) and Cd(Ⅱ) onto Biochar[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 1122-1131.
王棋, 王斌伟, 谈广才, 许楠. 生物炭对Cu(Ⅱ)、Pb(Ⅱ)、Ni(Ⅱ)和Cd(Ⅱ)的单一及竞争吸附研究[J]. 北京大学学报自然科学版, 2017, 53(6): 1122-1131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.130
生物炭 | w/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Fe | |
BC | 61.08 | 21.67 | 0.36 | 1.09 | 1.65 | 7.12 | 0.2 | 0.13 | 0.53 | 2.78 | 2.75 | 0.65 |
DMBC | 71.66 | 16.73 | 0.16 | 1.53 | 0.41 | 3.03 | 0.77 | 0.11 | — | 2.51 | 2.84 | 0.27 |
Table 1 Elemental compositions of BC and DMBC
生物炭 | w/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Fe | |
BC | 61.08 | 21.67 | 0.36 | 1.09 | 1.65 | 7.12 | 0.2 | 0.13 | 0.53 | 2.78 | 2.75 | 0.65 |
DMBC | 71.66 | 16.73 | 0.16 | 1.53 | 0.41 | 3.03 | 0.77 | 0.11 | — | 2.51 | 2.84 | 0.27 |
生物炭 | BET面积/(m2 · g-1) | 微孔面积/(m2 · g-1) | 孔体积/(cm3 · g-1) | 微孔体积/(cm3 · g-1) | 平均孔径/nm |
---|---|---|---|---|---|
BC | 42.85 | 21.72 | 0.03366 | 0.01067 | 3.1422 |
DMBC | 22.568 | 11.11 | 0.02035 | 0.00493 | 36.066 |
Table 2 Biochar BC and DMBC parameters of BET
生物炭 | BET面积/(m2 · g-1) | 微孔面积/(m2 · g-1) | 孔体积/(cm3 · g-1) | 微孔体积/(cm3 · g-1) | 平均孔径/nm |
---|---|---|---|---|---|
BC | 42.85 | 21.72 | 0.03366 | 0.01067 | 3.1422 |
DMBC | 22.568 | 11.11 | 0.02035 | 0.00493 | 36.066 |
金属离子 | 吸附剂 | 准一级动力学常数 | 准二级动力学常数 | Elovich动力学常数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Qeq / (mg · g-1) | k1 /min-1 | R2 | Qeq / (mg · g-1) | k2 / (g · mg-1 · min-1) | R2 | β / (g · mg-1) | α / (mg · g-1 · min-1) | R2 | ||
Cu2+ | BC | 18.21 | 0.081 | 0.839 | 18.51 | 0.116 | 0.966 | 0.393 | 17.72 | 0.952 |
DMBC | 19.45 | 0.005 | 0.963 | 19.52 | 0.007 | 0.964 | 0.183 | 0.221 | 0.962 | |
Pb2+ | BC | 18.06 | 0.243 | 0.426 | 18.82 | 0.388 | 0.678 | 0.757 | 89.24 | 0.939 |
DMBC | 19.98 | 0.353 | 0.999 | 19.88 | 0.005 | 0.841 | 1.806 | 0.192 | 0.383 | |
Cd2+ | BC | 18.23 | 0.081 | 0.839 | 18.87 | 0.113 | 0.966 | 0.391 | 17.72 | 0.952 |
DMBC | 4.741 | 0.010 | 0.724 | 4.821 | 0.015 | 0.801 | 1.061 | 0.251 | 0.924 | |
Ni2+ | BC | 10.95 | 0.119 | 0.994 | 11.01 | 0.188 | 0.946 | 0.922 | 129.1 | 0.581 |
DMBC | 4.689 | 0.017 | 0.978 | 4.711 | 0.023 | 0.969 | 0.831 | 0.192 | 0.921 |
Table 3 Pseudo-first, pseudo-second and Elovich rate constants for sorption process of Cu2+, Pb2+, Ni2+ and Cd2+ by BC and DMBC
金属离子 | 吸附剂 | 准一级动力学常数 | 准二级动力学常数 | Elovich动力学常数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Qeq / (mg · g-1) | k1 /min-1 | R2 | Qeq / (mg · g-1) | k2 / (g · mg-1 · min-1) | R2 | β / (g · mg-1) | α / (mg · g-1 · min-1) | R2 | ||
Cu2+ | BC | 18.21 | 0.081 | 0.839 | 18.51 | 0.116 | 0.966 | 0.393 | 17.72 | 0.952 |
DMBC | 19.45 | 0.005 | 0.963 | 19.52 | 0.007 | 0.964 | 0.183 | 0.221 | 0.962 | |
Pb2+ | BC | 18.06 | 0.243 | 0.426 | 18.82 | 0.388 | 0.678 | 0.757 | 89.24 | 0.939 |
DMBC | 19.98 | 0.353 | 0.999 | 19.88 | 0.005 | 0.841 | 1.806 | 0.192 | 0.383 | |
Cd2+ | BC | 18.23 | 0.081 | 0.839 | 18.87 | 0.113 | 0.966 | 0.391 | 17.72 | 0.952 |
DMBC | 4.741 | 0.010 | 0.724 | 4.821 | 0.015 | 0.801 | 1.061 | 0.251 | 0.924 | |
Ni2+ | BC | 10.95 | 0.119 | 0.994 | 11.01 | 0.188 | 0.946 | 0.922 | 129.1 | 0.581 |
DMBC | 4.689 | 0.017 | 0.978 | 4.711 | 0.023 | 0.969 | 0.831 | 0.192 | 0.921 |
金属离子 | 吸附剂 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
R2 | b /(L · mg-1) | Qm /(mg · g-1) | R2 | k /(mg · g-1(mg/L) -1/n) | n /(g · L-1) | ||
Cu2+ | BC | 0.992 | 0.597 | 25.07 | 0.956 | 12.48 | 3.389 |
DMBC | 0.994 | 0.582 | 31.72 | 0.933 | 9.121 | 3.367 | |
Pb2+ | BC | 0.989 | 0.161 | 78.08 | 0.985 | 22.46 | 0.857 |
DMBC | 0.986 | 0.211 | 160.3 | 0.971 | 16.43 | 0.934 | |
Ni2+ | BC | 0.977 | 0.792 | 18.02 | 0.996 | 9.092 | 4.608 |
DMBC | 0.954 | 3.803 | 19.64 | 0.989 | 11.14 | 6.944 | |
Cd2+ | BC | 0.994 | 0.802 | 22.85 | 0.951 | 11.64 | 3.636 |
DMBC | 0.981 | 0.715 | 28.52 | 0.911 | 8.729 | 3.546 |
Table 4 Fitting parameters for adsorption isotherms of four kinds of metal ions on BC and DMBC
金属离子 | 吸附剂 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
R2 | b /(L · mg-1) | Qm /(mg · g-1) | R2 | k /(mg · g-1(mg/L) -1/n) | n /(g · L-1) | ||
Cu2+ | BC | 0.992 | 0.597 | 25.07 | 0.956 | 12.48 | 3.389 |
DMBC | 0.994 | 0.582 | 31.72 | 0.933 | 9.121 | 3.367 | |
Pb2+ | BC | 0.989 | 0.161 | 78.08 | 0.985 | 22.46 | 0.857 |
DMBC | 0.986 | 0.211 | 160.3 | 0.971 | 16.43 | 0.934 | |
Ni2+ | BC | 0.977 | 0.792 | 18.02 | 0.996 | 9.092 | 4.608 |
DMBC | 0.954 | 3.803 | 19.64 | 0.989 | 11.14 | 6.944 | |
Cd2+ | BC | 0.994 | 0.802 | 22.85 | 0.951 | 11.64 | 3.636 |
DMBC | 0.981 | 0.715 | 28.52 | 0.911 | 8.729 | 3.546 |
[1] | 韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展. 生态学报, 2001, 21(7): 1197-1203 |
[2] | Balistrieri L S, Seal R R, Piatak N M, et al.Asse-ssing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 2007, 22(5): 930-952 |
[3] | Lin C, Wu Y, Lu W, et al.Water chemistry and ecoto-xicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Journal of Hazardous Materials, 2007, 142(1): 199-207 |
[4] | Pandey P K, Sharma R, Roy M, et al.Toxic mine drainage from Asia’s biggest copper mine at Malanjk-hand, India. Environmental Geochemistry and Health, 2007, 29(3): 237-248 |
[5] | Xiao H Y, Zhou W B, Zeng F P, et al.Water chemistry and heavy metal distribution in an AMD highly contaminated river. Environmental Earth Sciences, 2010, 59(5): 1023-1031 |
[6] | Liu H, Probst A, Liao B.Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environ-ment, 2005, 339(1): 153-166 |
[7] | Lee S.Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma, 2006, 135: 26-37 |
[8] | Wilson K, Yang H, Seo C W, et al.Select metal adsorption by activated carbon made from peanut shells. Bioresource Technology, 2006, 97(18): 2266-2270 |
[9] | Rao M M, Ramana D K, Seshaiah K, et al.Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Mate-rials, 2009, 166(2): 1006-1013 |
[10] | Ijagbemi C O, Baek M H, Kim D S.Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 2009, 166(1): 538-546 |
[11] | El-Bayaa A A, Badawy N A, AlKhalik E A. Effect of ionic strength on the adsorption of copper and chro-mium ions by vermiculite pure clay mineral. Journal of Hazardous Materials, 2009, 170(2): 1204-1209 |
[12] | Fischer L, Brümmer G W, Barrow N J.Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. Euro-pean Journal of Soil Science, 2007, 58(6): 1304-1315 |
[13] | Hao Y M, Man C, Hu Z B.Effective removal of Cu(Ⅱ) ions from aqueous solution by amino-func-tionalized magnetic nanoparticles. Journal of Hazar-dous Materials, 2010, 184(1): 392-399 |
[14] | Ofomaja A E, Unuabonah E I, Oladoja N A.Com-petitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust. Bioresource Technology, 2010, 101(11): 3844-3852 |
[15] | Hansen H K, Arancibia F, Gutiérrez C.Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials, 2010, 180(1): 442-448 |
[16] | Joseph S, Lehmann J.Biochar for environmental management: science and technology. London: Earth-scan, 2009 |
[17] | Chen B, Zhou D, Zhu L.Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 2008, 42(14): 5137-5143 |
[18] | Gaunt J L, Lehmann J.Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Tech-nology, 2008, 42(11): 4152-4158 |
[19] | 李力, 刘娅, 陆宇, 等. 生物炭的环境效应及其应用的研究进展. 环境化学, 2011, 30(8): 1411-1421 |
[20] | Chen B, Yuan M.Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 2011, 11(1): 62-71 |
[21] | Downie A, Munroe P, Cowie A, et al.Biochar as a geoengineering climate solution: hazard identification and risk management. Critical Reviews in Environ-mental Science and Technology, 2012, 42(3): 225-250 |
[22] | Fang G, Gao J, Liu C, et al.Key role of persistent free radicals in hydrogen peroxide activation by bio-char: implications to organic contaminant degradation. Environmental Science & Technology, 2014, 48(3): 1902-1910 |
[23] | Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1(5): 56 |
[24] | Angelo L C, Mangrich A S, Mantovani K M, et al.Loading of VO2+ and Cu2+ to partially oxidized charcoal fines rejected from Brazilian metallurgical industry. Journal of Soils and Sediments, 2014, 14(2): 353-359 |
[25] | Jiang J, Xu R, Jiang T, et al.Immobilization of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 2012, 229: 145-150 |
[26] | Luo F, Song J, Xia W, et al.Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ-mental Science and Pollution Research, 2014, 21(14): 8707-8717 |
[27] | Qian L, Chen B.Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology, 2013, 47(15): 8759-8768 |
[28] | Uchimiya M, Bannon D I, Wartelle L H.Retention of heavy metals by carboxyl functional groups of bio-chars in small arms range soil. Journal of Agricultural and Food Chemistry, 2012, 60(7): 1798-1809 |
[29] | Zhang X, Wang H, He L, et al.Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 2013, 20(12): 8472-8483 |
[30] | Xu Y, Chen B.Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. Journal of Soils and Sediments, 2015, 15(1): 60-70 |
[31] | Cao X, Ma L, Gao B, et al.Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ-mental Science & Technology, 2009, 43(9): 3285-3291 |
[32] | Uchimiya M, Chang S C, Klasson K T.Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 2011, 190(1): 432-441 |
[33] | Tan X, Liu Y, Zeng G, et al.Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125: 70-85 |
[34] | 楚颖超, 李建宏, 吴蔚东. 椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附. 环境工程学报, 2015, 9(5): 2165-2170 |
[35] | 陈再明, 方远, 徐义亮, 等. 水稻秸秆生物炭对重金属 Pb2+的吸附作用及影响因素. 环境科学学报, 2012, 32(4): 769-776 |
[36] | 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中 Pb、Cd的吸附. 农业环境科学学报, 2015, 34(5): 1001-1008 |
[37] | 陈坦, 韩融, 王洪涛, 等. 污泥基生物炭对重金属的吸附作用. 清华大学学报(自然科学版), 2014, 54(8): 1062-1067 |
[38] | Hui K S, Chao C Y H, Kot S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 2005, B127: 89-101 |
[39] | 郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和 Zn(Ⅱ)的吸附特征. 环境工程学报, 2015, 9(7): 3215-3222 |
[40] | Tan G, Sun W, Xu Y, et al.Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol, 2016, 211: 727-735 |
[41] | 夏广洁, 宋萍, 邱宇平. 牛粪源和木源生物炭对Pb(Ⅱ)和 Cd(Ⅱ)的吸附机理研究. 农业环境科学学报, 2014, 33(3): 569-575 |
[42] | 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究. 农业环境科学学报, 2012, 31(11): 2277-2283 |
[43] | Sarret G, Manceau A, Spadini L, et al.Structural determination of Zn and Pb binding sites in Penicil-lium chrysogenum cell walls by EXAFS spectroscopy. Environmental Science & Technology, 1998, 32(11): 1648-1655 |
[44] | Tiemann K J, Gamez G, Dokken K, et al.Chemical modification and X-ray absorption studies for lead (Ⅱ) binding by Medicago sativa (alfalfa) biomass. Microchemical Journal, 2002, 71(2): 287-293 |
[1] | Siqi TANG, Jingchen WANG, Ko Jaehac. Pore Structure Characteristics of Sludge Biochars during Pyrolysis with Various Pyrolysis Temperatures and Holding Times [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 890-898. |
[2] | DAI Jing,LIU Yangsheng. Adsorption of Pb2+ and Cd2+ onto Biochars Derived from Pyrolysis of Four Kinds of Biomasses [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 1075-1082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||