[1] |
Li Haizhou, Zhang Min, Su Jian. A joint source-channel model for machine transliteration // Scott D, Daelemans W, Walker M A. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Barcelona: ACL, 2004: 159‒166
|
[2] |
Pervouchine V, Li H, Lin B. Transliteration alignment // Su K Y, Su J, Wiebe J. Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Singapore: ACL, 2009: 136‒144
|
[3] |
Finch A, Liu L, Wang X, et al. Neural network transduction models in transliteration generation // Duan X Y, Banchs R E, Zhang M, et al. Proceedings of the Fifth Named Entity Workshop. Beijing: ACL, 2015: 61‒66
|
[4] |
Koehn P, Och F J, Marcu D. Statistical phrase-based translation // Daelemans W, Osborne M. Proceedings of the HLT/NAACL. Edmondon: ACL, 2003: 127‒133
|
[5] |
Stolcke A. SRILM — an extensible language mode-ling toolkit // Hansen J H L, Pellom B L. Proceedings of International Conference on Spoken Language Processing. Denver: Interspeech, 2002: 901‒904
|
[6] |
Chen S F, Goodman J T.An empirical study of smoothing techniques for language modeling. Tech-nical Report TR-10-98. Cambridge: Computer Sci-ence Group, Harvard University, 1998
|
[7] |
Och F J, Ney H. A systematic comparison of various statistical alignment models. Computational Linguis-tics, 2003, 29(1): 19‒51
|
[8] |
Koehn P, Hoang H, Birch A, et al. Moses: open source toolkit for statistical machine translation // Carroll J A, Van den Bosch A, Zaenen A. Proceedings of the Annual Meeting of the Association for Computational Linguistics, Demonstration Session. Prague: ACL, 2007: 177‒180
|
[9] |
Li H Z, Ma B, Lee C H.A vector space modeling approach to spoken language identification. IEEE Transaction on Acoustic, Speech, Signal Processing, 2007, 15(1): 271-284
|
[10] |
Liu L, Finch A, Utiyama M, et al. Agreement on targetbidirectional LSTMs for sequence to sequence learning // Schuurmans D, Wellman M P. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: AAAI, 2016: 2630‒2637
|
[11] |
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate // CoRR. Ithaca, New York, 2014: abs/1409.0473
|
[12] |
Chen B, Zhang M, Li H, et al. A comparative study of hypothesis alignment and its improvement for machine translation system combination // Su K Y, Su J, Wiebe J. Proceedings of ACL-IJCNLP. Singapore: ACL, 2009: 941‒948
|
[13] |
Snover M, Dorr B, Schwartz R, et al. A study of translation edit rate with targeted human annotation // Proceeding of AMTA. Boston: AMTA, 2006: 223‒231
|
[14] |
Melamed I D. Models of translational equivalence among words. Computational Linguistics, 2000, 26(2): 221‒249
|
[15] |
He X, Yang M, Gao J, et al. Indirect HMM-based hypothesis alignment for combining outputs from machine translation systems // Lapata M, Ng H T. Proceedings of EMNLP. Hawaii: ACL, 2008: 98‒107
|
[16] |
Zeiler M D. ADADELTA: an adaptive learning rate method // CoRR. Ithaca, New York, 2012: abs/1212. 5701
|
[17] |
Cheng Y, Shen S, He Z J, et al. Agreement-based joint training for bidirectional attention-based neural machine translation // Kambhampati S. Proceedings of IJCAI. New York: AAAI, 2016: 2761‒2767
|