Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2016, Vol. 52 ›› Issue (6): 1155-1160.DOI: 10.13209/j.0479-8023.2016.106

Previous Articles     Next Articles

Synthesis of PANI/VGCF Composite and Its Application in Microbial Fuel Cell

TAO Huchun, SUN Lihong, LI Jinbo, LI Jinlong   

  1. Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055
  • Received:2015-05-13 Revised:2015-06-01 Online:2016-11-20 Published:2016-11-20
  • Contact: TAO Huchun, E-mail: taohc(at)pkusz.edu.cn

聚苯胺/气相生长的碳纤维复合材料的制备及其在微生物燃料电池中的应用研究

陶虎春, 孙立红, 李金波, 李金龙   

  1. 北京大学深圳研究生院环境与能源学院, 深圳市重金属污染控制与资源化重点实验室, 深圳 518055
  • 通讯作者: 陶虎春, E-mail: taohc(at)pkusz.edu.cn
  • 基金资助:
    深圳市科技研发资金知识创新计划(JCYJ20130329174424934)资助

Abstract:

The polyaniline/vapor grown carbon fiber (PANI/VGCF) was synthesized by in-situ polymerization, and SEM, FTIR, and TGA were used to investigate the microstructure, polymerization mechanism, and thermal stability. SEM images showed that polyaniline/vapor grown carbon fiber was at nano-scale, and the microstructure was similar with purified vapor grown carbon fiber, which indicated that the polymerization of aniline occurred on the surface of the carbon fibers. FTIR spectra gave further explanation of the composite mechanism and there was no new bond generated. The maximum power density of the microbial fuel cell with polyaniline/vapor grown carbon fiber as modification with a specific loading of 5 mg/cm2 was 299 mW/m2, which was 6.5 times higher than the unmodified microbial fuel cell. The EIS spectra fitted well to the Nyquist model and the equivalent circuit model was given. Polyaniline/vapor grown carbon fiber could be regarded as one economical and potential cathode catalyst for oxygen reduction reaction in microbial fuel cell.

Key words: polyaniline, vapor grown carbon fiber, nano-composite, cathode catalyst, microbial fuel

摘要:

用原位化学氧化聚合的方法合成聚苯胺/气相生长的碳纤维的复合材料, 采用SEM, FTIR和TGA对聚苯胺/气相生长的碳纤维复合材料的微观形貌、结构和热稳定性进行测定。SEM结果显示, 聚苯胺/气相生长的碳纤维复合材料属于纳米级别, 形貌与气相生长的碳纤维类似, 推测苯胺的聚合作用发生在碳纤维的表面。FTIR结果显示聚苯胺与复合材料具有相似的图谱, 进一步证实聚合作用发生在碳材料的表面, 聚合过程中未产生新的键合作用。将复合材料作为阴极催化剂修饰到碳布的基底电极上, 修饰量为5 mg/cm2, 结果表明复合材料修饰的微生物燃料电池的功率密度最大值为299 mW/m2, 比未修饰的燃料电池提高6.5倍。电化学阻抗谱图较好地符合Nyquist模型, 并给出等效电路图。聚苯胺/气相生长的碳纤维复合材料可以作为一种廉价且性能优良的阴极氧气还原反应催化剂。

关键词: 聚苯胺, 气相生长的碳纤维, 复合材料, 阴极催化剂, 微生物燃料电池

CLC Number: