Acta Scientiarum Naturalium Universitatis Pekinensis
Next Articles
HE Binbin, ZOU Lei, ZHAO Dongyan
Received:
Online:
Published:
贺彬彬,邹磊,赵东岩
Abstract: To effectively improve the data quality of RDF knowledge base, a solution is proposed about abnoraml data discovery and errouneous data repair in RDF graphs. Firstly, the authors innovatively define graph-based conditional functional dependency (GCFD) that can represent the attribute value and semantic structure dependencies of RDF data in a uniform manner. Then, an efficient framework and some novel pruning rules are proposed to discover GCFDs, and the workflow of auto-repairing errorneous data are given. Extensive experiments on several real-life RDF repositories confirm the superiority of proposed solution.
Key words: RDF data quality, graph-based conditional functional dependencies (GCFD), conditional functional dependency, functional dependency, RDF data quality, graph-based conditional functional dependencies (GCFD), conditional functional dependency, functional dependency
摘要: 为了提高RDF知识库的数据质量, 提出RDF图数据的异常检测及其自动修复的方法。首先, 原创性地定义了基于图的条件函数依赖(GCFD), 能够将属性值和语义结构的依赖关系统一表示; 然后, 提出有效的算法框架以及优化策略, 挖掘RDF数据中的GCFD, 并给出异常数据的自动修复流程; 最后, 在真实的数据集上, 通过大量实验确认解决方案的可行性和优越性。
关键词: RDF数据质量, 基于图的条件函数依赖, 条件函数依赖, 函数依赖, RDF数据质量, 基于图的条件函数依赖, 条件函数依赖, 函数依赖
CLC Number:
TP18
HE Binbin,ZOU Lei,ZHAO Dongyan. Discovering Abnormal Data in RDF Knowledge Base[J]. Acta Scientiarum Naturalium Universitatis Pekinensis.
贺彬彬,邹磊,赵东岩. 语义知识库构建中的异常数据发现[J]. 北京大学学报(自然科学版).
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/
https://xbna.pku.edu.cn/EN/Y2015/V51/I2/195