[1] |
Agirre E, De Lacalle O L, Fellbaum C, et al. - 2010 task 17: all-words word sense disambiguation on a specific domain // Proceedings of the Workshop on Semantic Evaluations of the Association for Computational Linguistics. Singapore, 2009: 123-128
|
[2] |
Koeling R, McCarthy D, Carroll J. Domain-specific sense distributions and predominant sense acquisition // Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Lan-guage Processing of the Association for Compu-tational Linguistics. Vancouver, 2005: 419-426
|
[3] |
Kulkarni A, Khapra M M, Sohoney S, et al.CFILT: resource conscious approaches for all-words domain specific WSD // Proceedings of the 5th International Workshop on Semantic Evaluation of the Association for Computational Linguistics. Uppsala, 2010: 421-426
|
[4] |
Lesk M.Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone // Proceedings of the 5th ACM Annual International Conference on Systems Documentation. New York, 1986: 24-26
|
[5] |
Banerjee S, Pedersen T.An adapted Lesk algorithm for word sense disambiguation using WordNet // International Conference on Intelligent Text Proce-ssing and Computational Linguistics. Mexico, 2002: 136-145
|
[6] |
Basile P, Caputo A, Semeraro G.An enhanced lesk word sense disambiguation algorithm through a distributional semantic model // COLING. Dublin, 2014: 1591-1600
|
[7] |
Agirre E, De Lacalle O L, Soroa A, et al. Knowledge-based WSD and specific domains: performing better than generic supervised WSD // IJCAI. Pasadena, 2009: 1501-1506
|
[8] |
Dwivedi S K, Rastogi P.Critical analysis of WSD algorithms // Proceedings of the ACM International Conference on Advances in Computing, Communica-tion and Control. Beirut, 2009: 62-67
|
[9] |
Lee Y K, Ng H T, Chia T K.Supervised word sense disambiguation with support vector machines and multiple knowledge sources // Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text. Barcelona, 2004: 137-140
|
[10] |
Zhong Zhi, Ng H T.It makes sense: a wide-coverage word sense disambiguation system for free text // Proceedings of the ACL 2010 System Demonstrations. Uppsala, 2010: 78-83
|
[11] |
Khapra M M, Shah S, Kedia P, et al.Domain-specific word sense disambiguation combining corpus based and wordnet based parameters // 5th International Conference on Global Wordnet (GWC2010). Mumbai, 2010: 1-9
|
[12] |
Weeber M, Mork J G, Aronson A R.Developing a test collection for biomedical word sense disambiguation // Proceedings of the AMIA Symposium of the American Medical Informatics Association. Washington DC, 2001: 746-750
|
[13] |
Magnini B, Strapparava C, Pezzulo G, et al.The role of domain information in word sense disambiguation. Natural Language Engineering, 2002, 8(4): 359-373
|
[14] |
Mikolov T, Chen Kai, Corrado G, et al.Efficient estimation of word representations in vector space // ICLR. Scottsdale, 2013: 1-12
|
[15] |
Yuan Dayu, Doherty R, Richardson J, et al. Word sense disambiguation with neural language models [EB/OL]. (2016-11-05) [2016-12-01].
|
[16] |
Chen Xinxiong, Liu Zhiyuan, Sun Maosong.A unified model for word sense representation and disambiguation // EMNLP. Doha, 2014: 1025-1035
|
[17] |
Miller G A.WordNet: a lexical database for English. Communications of the ACM, 1995, 38(11): 39-41
|
[18] |
Pedersen T, Patwardhan S, Michelizzi J.WordNet:: similarity: measuring the relatedness of concepts // HLT-NAACL. Boston, 2004: 38-41
|
[19] |
Varelas G, Voutsakis E, Raftopoulou P, et al.Semantic similarity methods in WordNet and their application to information retrieval on the web // Proceedings of the 7th annual ACM international workshop on Web information and data management. Bremen, 2005: 10-16
|
[20] |
Bird S, Klein E, Loper E.Natural language processing with Python. Sebastopol: O’Reilly Media, 2009
|
[21] |
Balamurali A R, Joshi A, Bhattacharyya P.Robust sense-based sentiment classification // Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis of the Associa-tion for Computational Linguistics. Portland, 2011: 132-138
|
[22] |
Rose T, Stevenson M, Whitehead M.The Reuters corpus Volume 1-from yesterday’s news to tomorrow’s language resources // LREC. Las Palmas, 2002: 827-832
|
[23] |
McCarthy D, Koeling R, Weeds J, et al. Unsupervised acquisition of predominant word senses. Computa-tional Linguistics, 2007, 33(4): 553-590
|