Acta Scientiarum Naturalium Universitatis Pekinensis

Previous Articles     Next Articles

Application of Levy-Lindeberg Theorem in the Planning of Raingauge Network

SUN Dali1,2, WANG Jiuke3, LIU Xiaoyang1, HE Siyuan1,4   

  1. 1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871; 2. 91395 PLA Troops, Beijing 102443; 3. The National Marine Environment Forecast Center, Beijing 100081;4. Baicheng Ordnance Test Center, Baicheng 137001;
  • Received:2013-12-12 Online:2015-01-20 Published:2015-01-20

独立同分布中心极限定理在雨量站网规划中的应用

孙大利1,2,王久珂3,刘晓阳1,何思远1,4   

  1. 1. 北京大学物理学院大气与海洋科学系, 北京 100871; 2. 中国人民解放军91395部队, 北京 102443; 3. 国家海洋环境预报中心, 北京 100081; 4. 白城兵器试验中心, 白城 137001;

Abstract: By introducing levy-lindeberg theorem to raingauge networks planning, the authors obtain a linear relationship between the measurement precision of areal rainfall (relative error or permissible error) and raingauge networks density (average station spacing). The slope of relative error growing is directly proportional to the mean square error of random observation error, inversely proportional to square root of the areal rainfall and region area. Based on simulated rainfall fields and highdensity rainfall data during Mei-yu season in Anhui Province, conclusion above is validated by the statistic analysis reducing the raingauge stations method. The slope of the linear relationship is also investigated. This research is significant to provide certain reference for optimization of raingauge networks location planning. Based on the relationship, the authors calculate 2005-2008 rainfall data during Mei-yu season in Anhui Province and conclude that correlation coefficient between the measurement precision of areal rainfall and raingauge networks density in Huaibei Plain is 0.49 to 0.80, in the mountains of Southern Anhui Province is 0.70 to 1.41. Assuming that permissible error is 20%, the minimum average station spacing (the maximum Raingauge networks density) in Huaibei Plain is 25 km and in the mountains of Southern Anhui Province is 14 km.

Key words: raingauge networks, density, error, design

摘要: 将独立同分布中心极限定理引入雨量站网的规划中, 得出面雨量测量精度(测量相对误差或允许误差)与雨量站网密度(平均站间距)呈线性关系, 误差增长的斜率与该区域雨量站观测的随机误差均方差呈正比, 与区域面雨量和区域面积的平方根呈反比。利用模拟降水场以及安徽省梅雨期间高密度的雨量站点资料, 以抽站法为基础进行统计计算, 验证上述结论, 并对这一线性关系的斜率进行讨论, 以期为雨量站网的规划和优化提供一定依据。应用导出的关系式对安徽省2005-2008年梅雨季节降水统计得出, 面雨量测量精度与雨量站密度的相关系数在淮北平原为0.49~0.80, 在皖南山区为0.70~1.41, 如果假定20%的允许误差, 安徽淮北平原和皖南山区的最小平均站间距(最高布站精度)分别为25和14 km。

关键词: 雨量站网, 密度, 误差, 规划

CLC Number: