Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2018, Vol. 54 ›› Issue (2): 229-235.DOI: 10.13209/j.0479-8023.2017.148

    Next Articles

A Hybrid Optimization Framework Fusing Word- and Sentence-Level Information for Extractive Summarization

LIN Xinyi1,2, YAN Rui1,†, ZHAO Dongyan1   

  1. 1. Institute of Computer Science and Technology, Peking University, Beijing 100080
    2. School of Electronic Engineering and Computer Science, Peking University, Beijing 100871
  • Received:2017-06-09 Revised:2017-08-31 Online:2018-03-20 Published:2018-03-20
  • Contact: YAN Rui, E-mail: ruiyan(at)pku.edu.cn

融合词、句层级信息的抽取式摘要优化框架

林心宜1,2, 严睿1,†, 赵东岩1   

  1. 1. 北京大学计算机科学技术研究所, 北京 100080
    2. 北京大学信息科学技术学院, 北京 100871
  • 通讯作者: 严睿, E-mail: ruiyan(at)pku.edu.cn
  • 基金资助:
    国家自然科学基金(61672058)、国家高技术研究发展计划(2015AA015403)和CCF-腾讯科研基金资助

Abstract:

In order to fuse word-level and sentence-level information from different semantic spaces, the authors propose a hybrid optimization framework to optimize word-level information while simultaneously incorporate sentence-level information as constraints. The optimization is conducted by iterative unit substitutions. The performance on DUC benchmark datasets demonstrates the effectiveness of proposed framework in terms of ROUGE evaluation.

Key words: extractive summarization, word-level information, sentence-level information, hybrid optimization framework

摘要:

提出一个混合的抽取式摘要优化框架, 在优化单词层级信息的同时, 将句子层级信息作为优化约束。在约束条件下, 该优化框架迭代地进行摘要文本中单元的替换, 得到不断逼近目标函数的最优解。与传统方法对比, 该框架在DUC数据集上获得ROUGE评测的高分, 证明了该框架的有效性。

关键词: 抽取式摘要生成, 词层级信息, 句层级信息, 混合迭代优化框架

CLC Number: