[1] Cai C, Worden R H, Bottrell S H, et al. Thermochemical sulfate reduction and the generation of 张单明等 碳酸盐岩?H2S 平衡体系原位溶蚀模拟实验及其地质意义 753 hydrogen sulfide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chemical Geology, 2003, 202(1): 39?57
[2] Worden R H, Smalley P C, Oxtoby N H. The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs. Geochimicaet Cosmochimica Acta, 1996, 60(20): 3925?3931
[3] Heydari E. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi. AAPG Bulletin, 1997, 81(1): 26?45
[4] Heydari E, Moore C H. Burial diagenesis and thermochemical sulfate reduction, Smackover Formation, southeastern Mississippi Salt Basin. Geology, 1989, 17(12): 1080?1084
[5] Xiang C, Pang X, Wang J, et al. Thermochemical sulfate reduction in the Tazhong District, Tarim Basin, Northeast China: evidence from formation water and natural gas geochemistry. Acta Geologica Sinica: English Edition, 2010, 84(2): 358?369
[6] 妥进才. 深层油气研究现状及进展. 地球科学进展, 2002, 17(4): 565?571
[7] 石昕, 戴金星, 赵文智. 深层油气藏勘探前景分析. 中国石油勘探, 2005, 10(1): 1?10
[8] 曾平. 高含硫碳酸盐岩气藏低伤害酸压技术及压后硫沉积规律研究[D]. 成都: 西南石油大学, 2006: 15?16
[9] Hao F, Guo T, Zhu Y, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bulletin, 2008, 92(5): 611?637
[10] Worden R H, Smalley P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology, 1996, 133(1): 157?171
[11] Goldhaber M B, Orr W L. Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S. ACS Symposium Series, 1995, 612 (6): 412?425
[12] Cross M M, Manning D A C, Bottrell S H, et al. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs. Organic Geochemistry, 2004, 35(4): 393? 404
[13] Zhang T, Amrani A, Ellis G S, et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation. Geochimicaet Cosmochimica Acta, 2008, 72(14): 3518?3530
[14] Zhang T, Ellis G S, Walters C C, et al. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments. Organic Geochemistry, 2008, 39(3): 308?328
[15] Zhang T, Ellis G S, Ma Q, et al. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin. Geochimicaet Cosmochimica Acta, 2012, 8(9): 1?17
[16] Worden R H, Smalley P C, Cross M M. The influence of rock fabric and mineralogy on thermochemical sulfate reduction: Khuff Formation, Abu Dhabi. Journal of Sedimentary Research, 2000, 70(5): 1210?1221
[17] Zhang T, Ellis G S, Wang K, et al. Effect of hydrocarbon type on thermochemical sulfate reduction. Organic Geochemistry, 2007, 38(6): 897?910
[18] Zhang S C, Shuai Y H, Zhu G Y. TSR promotes the formation of oil-cracking gases: evidence from simulation experiments. Science in China Series D: Earth Sciences, 2008, 51(3): 451?455
[19] Lu H, Chen T, Liu J, et al. Yields of H2S and gaseous hydrocarbons in gold tube experiments simulating thermochemical sulfate reduction reactions between MgSO4 and petroleum fractions. Organic Geochemistry, 2010, 41(11): 1189?1197
[20] Lu H, Greenwood P, Chen T, et al. The role of metal sulfates in thermochemical sulfate reduction (TSR) of hydrocarbons: insight from the yields and stable carbon isotopes of gas products. Organic Geochemistry, 2011, 42(6): 700?706
[21] Xiao Q, Sun Y, Chai P. Experimental study of the effects of thermochemical sulfate reduction on low molecular weight hydrocarbons in confined systems and its geochemical implications. Organic Geochemistry, 2011, 42(11): 1375?1393
[22] 朱光有, 张水昌, 梁英波, 等. TSR 对深部碳酸盐岩储层的溶蚀改造: 四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 2006, 22(8): 2182? 2194
[23] 范明, 蒋小琼, 刘伟新, 等. 不同温度条件下CO2 水溶液对碳酸盐岩的溶蚀作用. 沉积学报, 2007, 25(6): 825?830
[24] Taylor T R, Giles M R, Hathon L A, et al. Sandstone 北京大学学报(自然科学版) 第51 卷 第4 期 2015 年7 月 754 diagenesis and reservoir quality prediction: models, myths, and reality. AAPG Bulletin, 2010, 94(8): 1093?1132
[25] Ehrenberg S N, Walderhaug O, Bjørlykke K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?. AAPG Bulletin, 2012, 96(2): 217? 233
[26] 张建勇, 周进高, 潘立银, 等. 川东北地区孤立台地飞仙关组优质储层形成主控因素: 大气淡水淋滤及渗透回流白云石化. 天然气地球科学, 2013(1): 9?18
[27] Chen T S, He Q, Lu H, et al. Thermal simulation experiments of saturated hydrocarbons with calcium sulfate and element sulfur: implications on origin of H2S. Science in China: Ser D, 2009, 52(10): 1550? 1558
[28] Ding K, Li S, Yue C, et al. Simulation experiments on thermochemical sulfate reduction using natural gas. Journal of Fuel Chemistry and Technology, 2007, 35(4): 401?406
[29] Yue C, Li S, Ding K, et al. Study of simulation experiments on the TSR system and its effect on the natural gas destruction. Science in China: Ser D, 2005, 48(8): 1197?1202
[30] Chou I, Anderson A J. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells. Geochimica et Cosmochimica Acta, 2009, 73(20): 6360?6366
[31] Ma Y, Guo X, Guo T, et al. The Puguang gas field: new giant discovery in the mature Sichuan Basin, Southwest China. AAPG Bulletin, 2007, 91(5): 627? 643
[32] Ma Y, Zhang S, Guo T, et al. Petroleum geology of the Puguang sour gas field in the Sichuan Basin, SW China. Marine and Petroleum Geology, 2008, 25(4): 357?370
[33] Hao F, Guo T, Zhu Y, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bulletin, 2008, 92(5): 611?637
[34] Bassett W A, Shen A H, Bucknum M, et al. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from −190 to 1200?C. Review of Scientific Instruments, 1993, 64(8): 2340?2345
[35] Presser V, Hei B M, Nickel K G. EOS calculations for hydrothermal diamond anvil cell operation. Review of Scientific Instruments, 2008, 79(8): 1?9
[36] Schmidt C, Ziemann M A. In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 2000, 85(11): 1725? 1734
[37] Cai C, Xie Z, Worden R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: towards prediction of fatal H2S concentrations. Marine and Petroleum Geology, 2004, 21(10): 1265? 1279
[38] Sun Q, Qin C. Raman OH stretching band of water as an internal standard to determine carbonate concentrations. Chemical Geology, 2011, 283(3): 274?278
[39] 赵文智, 汪泽成, 王一刚. 四川盆地东北部飞仙关组高效气藏形成机理. 地质论评, 2006, 52(5): 708?718
[40] 楼章华, 李梅, 金爱民, 等. 中国海相地层水文地质地球化学与油气保存条件研究. 地质学报, 2008, 82(3): 387?396
[41] 杨云坤, 刘波, 秦善, 等. 碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义. 北京大学学报: 自然科学版, 2013, 49(5): 859?866
[42] Mazzullo S J, Harris P M. Mesogenetic dissolution: its role in porosity development in carbonate reservoirs (1). AAPG Bulletin, 1992, 76(5): 607?620 |