北京大学学报自然科学版 ›› 2021, Vol. 57 ›› Issue (3): 435-445.DOI: 10.13209/j.0479-8023.2021.005

上一篇    下一篇

天然气水合物相关的Slipstream海底滑坡体速度结构模型反演

蓝坤1,2, 朱贺1,2, 何涛1,2,†, 梁前勇3, 吴学敏3, 董一飞3, 张毅4   

  1. 1. 造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京 100871 2. 北京天然气水合物国际研究中心, 北京 100871 3. 中国地质调查局广州海洋地质调查局, 广州 510760 4. 中国地质科学院, 北京 100037
  • 收稿日期:2020-03-10 修回日期:2020-05-15 出版日期:2021-05-20 发布日期:2021-05-20
  • 通讯作者: 何涛, E-mail: taohe(at)pku.edu.cn
  • 基金资助:
    国家自然科学基金(41676032)和中国地质调查局国家天然气水合物专项基金(DD20190234, DD20190218, DD20189320, DD20160217, HDJJHT-20)资助

Model Inversion of Velocity Structure for Slipstream Submarine Slide Related to Gas Hydrate

LAN Kun1,2, ZHU He1,2, HE Tao1,2,†, LIANG Qianyong3, WU Xuemin3, DONG Yifei3, ZHANG Yi4   

  1. 1. Key Laboratory of Orogenic Belts and Crustal Evolution (MOE), School of Earth and Space Sciences, Peking University,

    Beijing 100871

    2. Beijing International Center for Gas Hydrate, Peking University, Beijing 100871

    3. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510760

    4. Chinese Academy of Geological Sciences, Beijing 100037

  • Received:2020-03-10 Revised:2020-05-15 Online:2021-05-20 Published:2021-05-20
  • Contact: HE Tao, E-mail: taohe(at)pku.edu.cn

摘要:

针对目前用于建立二维速度结构模型的RAYINVR软件对四分量海底地震仪(OBS)记录的转换横波无法自动反演, 建模效率低的问题, 采用MATLAB遗传反演算法, 对RAYINVR软件进行改进, 实现对横波速度结构模型各层和层中区块泊松比的自动同步反演, 可以为天然气水合物勘探调查提供泊松比和杨氏模量等重要弹性参数。利用采自Slipstream海底滑坡的OBS数据, 通过同步反演方法, 获得该地区较为精细的纵波和横波速度结构模型, 并可与附近U1326钻孔的测井数据进行对比, 验证了横波速度结构同步反演建模方法的有效性。模型揭示了两个泊松比差异大的结构面: 代表水合物稳定底界的似海底反射界面(BSR)(海底之下230±10 m)以及浅部异常高速体(有可能是高饱和度水合物富集的砂体)的底界(海底之下75~100 m), 后者与滑脱面大致重合, 指示水合物与Slipstream海底滑坡的形成有关。

关键词: 同步反演, 横波速度结构, Slipstream海底滑坡, 天然气水合物, 射线追踪

Abstract:

The RAYINVR software, which is widely used in academia for 2-D velocity structure model from fourcomponent OBS (ocean bottom seismometer) data, is unable to invert for the converted S-wave automatically, resulting in the low-efficiency of modeling process. Using MATLAB’s genetic algorithm, the RAYINVR software is improved and able to automatically and synchronously invert for Poisson’s ratios of each layer with all subblocks for the S-wave velocity structure model, and thus can provide Young’s modulus, Poisson’s ratio and other important mechanical information for gas hydrate survey. This method is applied to process the OBS data collected at the Slipstream submarine slide, and a fine P- and S-wave velocity structure model is obtained, which is comparable to the logging data of nearby borehole U1326. Therefore, the validity of the auto-synchronous inversion method is verified for the S-wave velocity structure modeling. The optimal velocity model reveals two structural interfaces with large Poisson’s ratio contrast. One is BSR (bottom simulating reflector) at 230±10 mbsf (meter beneath sea floor), which represents the bottom boundary of the gas hydrate stability zone, and the other is the basal boundary of a shallow abnormal high-speed body (possibly a sand body enriched with high saturation gas hydrate) at 75?100 mbsf. The latter agrees roughly with the glide plane of Slipstream submarine slide, indicating that the hydrate is related to the formation of submarine landslide.

Key words: synchronous inversion, S-wave velocity structure, Slipstream submarine slide, gas hydrate, ray tracing