[1] |
韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展. 生态学报, 2001, 21(7): 1197-1203
|
[2] |
Balistrieri L S, Seal R R, Piatak N M, et al.Asse-ssing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Vermont, USA. Applied Geochemistry, 2007, 22(5): 930-952
|
[3] |
Lin C, Wu Y, Lu W, et al.Water chemistry and ecoto-xicity of an acid mine drainage-affected stream in subtropical China during a major flood event. Journal of Hazardous Materials, 2007, 142(1): 199-207
|
[4] |
Pandey P K, Sharma R, Roy M, et al.Toxic mine drainage from Asia’s biggest copper mine at Malanjk-hand, India. Environmental Geochemistry and Health, 2007, 29(3): 237-248
|
[5] |
Xiao H Y, Zhou W B, Zeng F P, et al.Water chemistry and heavy metal distribution in an AMD highly contaminated river. Environmental Earth Sciences, 2010, 59(5): 1023-1031
|
[6] |
Liu H, Probst A, Liao B.Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environ-ment, 2005, 339(1): 153-166
|
[7] |
Lee S.Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma, 2006, 135: 26-37
|
[8] |
Wilson K, Yang H, Seo C W, et al.Select metal adsorption by activated carbon made from peanut shells. Bioresource Technology, 2006, 97(18): 2266-2270
|
[9] |
Rao M M, Ramana D K, Seshaiah K, et al.Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Mate-rials, 2009, 166(2): 1006-1013
|
[10] |
Ijagbemi C O, Baek M H, Kim D S.Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 2009, 166(1): 538-546
|
[11] |
El-Bayaa A A, Badawy N A, AlKhalik E A. Effect of ionic strength on the adsorption of copper and chro-mium ions by vermiculite pure clay mineral. Journal of Hazardous Materials, 2009, 170(2): 1204-1209
|
[12] |
Fischer L, Brümmer G W, Barrow N J.Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. Euro-pean Journal of Soil Science, 2007, 58(6): 1304-1315
|
[13] |
Hao Y M, Man C, Hu Z B.Effective removal of Cu(Ⅱ) ions from aqueous solution by amino-func-tionalized magnetic nanoparticles. Journal of Hazar-dous Materials, 2010, 184(1): 392-399
|
[14] |
Ofomaja A E, Unuabonah E I, Oladoja N A.Com-petitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust. Bioresource Technology, 2010, 101(11): 3844-3852
|
[15] |
Hansen H K, Arancibia F, Gutiérrez C.Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials, 2010, 180(1): 442-448
|
[16] |
Joseph S, Lehmann J.Biochar for environmental management: science and technology. London: Earth-scan, 2009
|
[17] |
Chen B, Zhou D, Zhu L.Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 2008, 42(14): 5137-5143
|
[18] |
Gaunt J L, Lehmann J.Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Tech-nology, 2008, 42(11): 4152-4158
|
[19] |
李力, 刘娅, 陆宇, 等. 生物炭的环境效应及其应用的研究进展. 环境化学, 2011, 30(8): 1411-1421
|
[20] |
Chen B, Yuan M.Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 2011, 11(1): 62-71
|
[21] |
Downie A, Munroe P, Cowie A, et al.Biochar as a geoengineering climate solution: hazard identification and risk management. Critical Reviews in Environ-mental Science and Technology, 2012, 42(3): 225-250
|
[22] |
Fang G, Gao J, Liu C, et al.Key role of persistent free radicals in hydrogen peroxide activation by bio-char: implications to organic contaminant degradation. Environmental Science & Technology, 2014, 48(3): 1902-1910
|
[23] |
Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1(5): 56
|
[24] |
Angelo L C, Mangrich A S, Mantovani K M, et al.Loading of VO2+ and Cu2+ to partially oxidized charcoal fines rejected from Brazilian metallurgical industry. Journal of Soils and Sediments, 2014, 14(2): 353-359
|
[25] |
Jiang J, Xu R, Jiang T, et al.Immobilization of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 2012, 229: 145-150
|
[26] |
Luo F, Song J, Xia W, et al.Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ-mental Science and Pollution Research, 2014, 21(14): 8707-8717
|
[27] |
Qian L, Chen B.Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology, 2013, 47(15): 8759-8768
|
[28] |
Uchimiya M, Bannon D I, Wartelle L H.Retention of heavy metals by carboxyl functional groups of bio-chars in small arms range soil. Journal of Agricultural and Food Chemistry, 2012, 60(7): 1798-1809
|
[29] |
Zhang X, Wang H, He L, et al.Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 2013, 20(12): 8472-8483
|
[30] |
Xu Y, Chen B.Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution. Journal of Soils and Sediments, 2015, 15(1): 60-70
|
[31] |
Cao X, Ma L, Gao B, et al.Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ-mental Science & Technology, 2009, 43(9): 3285-3291
|
[32] |
Uchimiya M, Chang S C, Klasson K T.Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 2011, 190(1): 432-441
|
[33] |
Tan X, Liu Y, Zeng G, et al.Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, 125: 70-85
|
[34] |
楚颖超, 李建宏, 吴蔚东. 椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附. 环境工程学报, 2015, 9(5): 2165-2170
|
[35] |
陈再明, 方远, 徐义亮, 等. 水稻秸秆生物炭对重金属 Pb2+的吸附作用及影响因素. 环境科学学报, 2012, 32(4): 769-776
|
[36] |
李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中 Pb、Cd的吸附. 农业环境科学学报, 2015, 34(5): 1001-1008
|
[37] |
陈坦, 韩融, 王洪涛, 等. 污泥基生物炭对重金属的吸附作用. 清华大学学报(自然科学版), 2014, 54(8): 1062-1067
|
[38] |
Hui K S, Chao C Y H, Kot S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 2005, B127: 89-101
|
[39] |
郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和 Zn(Ⅱ)的吸附特征. 环境工程学报, 2015, 9(7): 3215-3222
|
[40] |
Tan G, Sun W, Xu Y, et al.Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol, 2016, 211: 727-735
|
[41] |
夏广洁, 宋萍, 邱宇平. 牛粪源和木源生物炭对Pb(Ⅱ)和 Cd(Ⅱ)的吸附机理研究. 农业环境科学学报, 2014, 33(3): 569-575
|
[42] |
李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究. 农业环境科学学报, 2012, 31(11): 2277-2283
|
[43] |
Sarret G, Manceau A, Spadini L, et al.Structural determination of Zn and Pb binding sites in Penicil-lium chrysogenum cell walls by EXAFS spectroscopy. Environmental Science & Technology, 1998, 32(11): 1648-1655
|
[44] |
Tiemann K J, Gamez G, Dokken K, et al.Chemical modification and X-ray absorption studies for lead (Ⅱ) binding by Medicago sativa (alfalfa) biomass. Microchemical Journal, 2002, 71(2): 287-293
|