北京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (4): 708-712.DOI: 10.13209/j.0479-8023.2016.087

上一篇    下一篇

基于广义坐标形式的高斯最小拘束原理的多刚体系统动力学建模

姚文莉   

  1. 青岛理工大学理学院, 青岛 266520
  • 收稿日期:2015-11-23 修回日期:2016-02-13 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 姚文莉, E-mail: ywenli1969(at)sina.com
  • 基金资助:
    国家自然科学基金(11272167, 11472145)资助

Dynamical Modeling of Multi-Rigid-Body System Based on Gauss Principle of Least Constraint in Generalized Coordinates

YAO Wenli   

  1. School of Sciences, Qingdao Technological University, Qingdao 266520
  • Received:2015-11-23 Revised:2016-02-13 Online:2016-07-20 Published:2016-07-20
  • Contact: YAO Wenli, E-mail: ywenli1969(at)sina.com

摘要:

通过采用动能及广义坐标显式的变分形式的高斯原理, 明确了广义坐标形式的高斯拘束中各项的含义, 以此建立以笛卡尔广义坐标表达的一般多刚体系统动力学问题的优化模型, 并研究利用上述模型列写其他坐标体系下的高斯拘束的方法。采用该方法可将多刚体系统的动力学问题变为求拘束极值的问题, 并且只要给出广义笛卡尔坐标与其他广义坐标之间的雅可比关系式, 便可方便地得到该坐标系统下的高斯拘束, 建模过程简单且具有更强的通用性。采用广义笛卡尔坐标及拉格朗日坐标, 对简单刚体的平面运动及定轴转动问题建立动力学优化模型, 并验证了该方法的有效性。

关键词: 高斯最小拘束原理, 笛卡尔广义坐标, 拉格朗日坐标体系, 多刚体系统, 动力学

Abstract:

 By variational Gauss principle in the form of kinetic energy and explicit express, the meaning of items in Gauss constraints is confirmed. The optimization model of dynamics of multi-rigid-body system in the form of Descartes generalized coordinates is established based on Gauss principle of least constraint in generalized coordinates. The method to write the Gauss constraints in other coordinate system according to the above model is studied. The dynamical problem of multi-rigid-body system can be turned into a problem for a minimum, and provided by the relation between the Descartes generalized coordinates and other coordinates system, the Gauss constraint in this kind of coordinates system is easy to be obtained. The modeling method is more convenient and is of universality. The dynamical models are established for planar motion and fixed axis rotation by Descartes generalized coordinate and Lagrange coordinate, and the validity of this method is proved.

Key words: Gauss principle of least constraint, Descartes generalized coordinates, Lagrange coordinate system, multi-rigid-body system, dynamics

中图分类号: