北京大学学报(自然科学版) ›› 2016, Vol. 52 ›› Issue (4): 669-675.DOI: 10.13209/j.0479-8023.2016.069
邓子辰, 李庆军
DENG Zichen, LI Qingjun
摘要:
编队飞行卫星间的距离远小于卫星的轨道半径, 其动力学方程表现为弱非线性。针对弱非线性方程的求解, 提出精细指数积分方法, 用精细积分法求解指数积分方法中的指数矩阵。用精细指数积分法和Runge-Kutta方法, 在不同条件下求解弱非线性方程的算例, 验证了精细指数积分法的有效性。通过Lagrange方程, 建立卫星编队飞行动力学方程的半线性形式, 用精细指数积分方法与Runge-Kutta方法求解方程。数值计算结果表明, 与同阶的Runge-Kutta求解弱非线性微分方程相比, 精细指数积分法具有更高的精度, 为卫星编队飞行动力学仿真提供了一种有效的数值算法。
中图分类号: