Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2020, Vol. 56 ›› Issue (1): 39-44.DOI: 10.13209/j.0479-8023.2019.101

Previous Articles     Next Articles

Distant Supervision for Relation Extraction with Gate Mechanism

LI Xingya, CHEN Yufeng, XU Jin’an, ZHANG Yujie   

  1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044
  • Received:2019-05-23 Revised:2019-09-25 Online:2020-01-20 Published:2020-01-20
  • Contact: CHEN Yufeng, E-mail: chenyf(at)bjtu.edu.cn

融合门控机制的远程监督关系抽取方法

李兴亚, 陈钰枫, 徐金安, 张玉洁   

  1. 北京交通大学计算机与信息技术学院, 北京 100044
  • 通讯作者: 陈钰枫, E-mail: chenyf(at)bjtu.edu.cn
  • 基金资助:
    国家自然科学基金(61976016, 61473294, 61370130, 61876198)、北京市自然科学基金(4172047)和科学技术部国际科技合作计划(K11F100010)资助

Abstract:

A piecewise convolutional neural network with gating mechanism is proposed, which would automatically filter positive correlation features at word-level. Moreover, the idea of soft-label is introduced to the gating mechanism to weaken the impact of hard labels on noise filtering. Combined with sentence-level noise filtering, the overall performance of the model is improved. The experimental results on the public dataset show that the proposed model has a significant improvement compared to the sentence-level noise filtering methods. 

Key words: relation extraction, distant supervision, gate mechanism, convolutional neural network

摘要:

提出一种融合门控机制的远程监督关系抽取方法。首先在词级别上自动选择正相关特征, 过滤与关系标签无关的词级别噪声; 然后在门控机制内引入软标签的思想, 弱化硬标签对噪声过滤的影响; 最后结合句子级别的噪声过滤, 提升模型的整体性能。在公开数据集上的实验结果表明, 相对于句子级别噪声过滤方法, 所提方法的性能有显著提高。

关键词: 关系抽取, 远程监督, 门控机制, 卷积神经网络