Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2018, Vol. 54 ›› Issue (2): 255-261.DOI: 10.13209/j.0479-8023.2017.153

Previous Articles     Next Articles

Neural Post-Editing Based on Machine Translation Quality Estimation

TAN Yiming, WANG Mingwen, LI Maoxi   

  1. School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022
  • Received:2017-06-05 Revised:2017-09-03 Online:2018-03-20 Published:2018-03-20
  • Contact: WANG Mingwen, E-mail: mwwang(at)


谭亦鸣, 王明文, 李茂西   

  1. 江西师范大学计算机信息工程学院, 南昌 330022
  • 通讯作者: 王明文, E-mail: mwwang(at)
  • 基金资助:
    国家自然科学基金(61662031, 61462044, 61462045)资助


In order to solve the problem of overcorrection in automatic post-editing translations, the authors propose to make advantage of the neural post-editing (NPE) to build two special models: one is used to provide minor edit operations, the other is used to provide single edit operation, and make advantage of machine translation quality estimation to establish a filtering algorithm to integrate the special models with the regular NPE model into a jointed model. Experimental results on the test set of WMT16 APE shared task show that the proposed approach statistically outperforms the baseline. Deep analysis further confirms that proposed approach can bring considerable relief from the over-editing problem in APE.

Key words: automatic post-editing, neural machine translation, quality estimation of machine translation, overcorrection


针对译文后编辑中的过度修正问题, 提出利用神经网络自动后编辑方法, 训练专门用于提供少量复合编辑修正和单一编辑类型修正的神经网络后编辑模型。在此基础上, 通过建立一个基于翻译质量估计的译文筛选算法, 将提出的模型与常规的神经网络自动后编辑模型进行联合。在WMT16自动后编辑任务测试集上的实验结果表明, 与基准系统相比, 所提方法显著提高了机器译文的翻译质量, 实验分析也表明该方法能有效地处理过度修正造成的译文质量下降问题。

关键词: 译文自动后编辑, 神经机器翻译, 机器翻译质量估计, 过度修正

CLC Number: