Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (6): 1021-1030.DOI: 10.13209/j.0479-8023.2017.054
• Orginal Article • Previous Articles Next Articles
Yuyang LIU1,2, Mao PAN1,2, Chi ZHANG1, Xi CHEN1, Zhaoliang LI3
Received:
2016-06-16
Revised:
2016-11-28
Online:
2017-11-20
Published:
2017-11-20
基金资助:
Yuyang LIU, Mao PAN, Chi ZHANG, Xi CHEN, Zhaoliang LI. Research of Permeability Numerical Prediction and Upscaling Based on Micro-CT Computed Tomography of Sandstone Core Sample[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 1021-1030.
刘钰洋, 潘懋, 张驰, 陈曦, 李兆亮. 基于砂岩数字岩芯图像的渗透率模拟与粗化[J]. 北京大学学报自然科学版, 2017, 53(6): 1021-1030.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.054
岩芯分层 | 岩层厚度 | Z轴坐标值 | 岩石类型 | |
---|---|---|---|---|
体元值 | 真实值/µm | |||
1 | 52 | 291.2 | 64 | 细粒 |
2 | 164 | 918.4 | 117 | 粗粒 |
3 | 66 | 369.6 | 281 | 过渡 |
4 | 68 | 380.8 | 347 | 细粒 |
5 | 86 | 481.6 | 415 | 过渡 |
6 | 140 | 784.0 | 501 | 细粒 |
7 | 246 | 1377.6 | 641 | 粗粒 |
8 | 112 | 627.2 | 887 | 过渡 |
9 | 204 | 1142.4 | 999 | 细粒 |
10 | 226 | 1265.6 | 1203 | 粗粒 |
11 | 123 | 688.8 | 1429 | 过渡 |
12 | 175 | 980.0 | 1552 | 细粒 |
13 | 51 | 285.6 | 1727 | 粗粒 |
Table 1 Rock-typing results based on K-means cluster analysis
岩芯分层 | 岩层厚度 | Z轴坐标值 | 岩石类型 | |
---|---|---|---|---|
体元值 | 真实值/µm | |||
1 | 52 | 291.2 | 64 | 细粒 |
2 | 164 | 918.4 | 117 | 粗粒 |
3 | 66 | 369.6 | 281 | 过渡 |
4 | 68 | 380.8 | 347 | 细粒 |
5 | 86 | 481.6 | 415 | 过渡 |
6 | 140 | 784.0 | 501 | 细粒 |
7 | 246 | 1377.6 | 641 | 粗粒 |
8 | 112 | 627.2 | 887 | 过渡 |
9 | 204 | 1142.4 | 999 | 细粒 |
10 | 226 | 1265.6 | 1203 | 粗粒 |
11 | 123 | 688.8 | 1429 | 过渡 |
12 | 175 | 980.0 | 1552 | 细粒 |
13 | 51 | 285.6 | 1727 | 粗粒 |
岩芯分层 | 岩层体元厚度 | Z轴坐标值 | 岩石类型 | ||
---|---|---|---|---|---|
原始 | 变换后 | 原始 | 变换后 | ||
1 | 52 | 67 | 64 | 64 | 细粒 |
2 | 164 | 194 | 117 | 102 | 粗粒 |
3 | 66 | 96 | 281 | 266 | 过渡 |
4 | 68 | 98 | 347 | 332 | 细粒 |
5 | 86 | 116 | 415 | 400 | 过渡 |
6 | 140 | 170 | 501 | 486 | 细粒 |
7 | 246 | 276 | 641 | 626 | 粗粒 |
8 | 112 | 142 | 887 | 872 | 过渡 |
9 | 204 | 234 | 999 | 984 | 细粒 |
10 | 226 | 256 | 1203 | 1188 | 粗粒 |
11 | 123 | 153 | 1429 | 1414 | 过渡 |
12 | 175 | 205 | 1552 | 1537 | 细粒 |
13 | 51 | 66 | 1727 | 1712 | 粗粒 |
Table 2 Permeability calculation based coordinate and thickness
岩芯分层 | 岩层体元厚度 | Z轴坐标值 | 岩石类型 | ||
---|---|---|---|---|---|
原始 | 变换后 | 原始 | 变换后 | ||
1 | 52 | 67 | 64 | 64 | 细粒 |
2 | 164 | 194 | 117 | 102 | 粗粒 |
3 | 66 | 96 | 281 | 266 | 过渡 |
4 | 68 | 98 | 347 | 332 | 细粒 |
5 | 86 | 116 | 415 | 400 | 过渡 |
6 | 140 | 170 | 501 | 486 | 细粒 |
7 | 246 | 276 | 641 | 626 | 粗粒 |
8 | 112 | 142 | 887 | 872 | 过渡 |
9 | 204 | 234 | 999 | 984 | 细粒 |
10 | 226 | 256 | 1203 | 1188 | 粗粒 |
11 | 123 | 153 | 1429 | 1414 | 过渡 |
12 | 175 | 205 | 1552 | 1537 | 细粒 |
13 | 51 | 66 | 1727 | 1712 | 粗粒 |
Fig. 5 Simulation process with capillary drainage transform map based on segmented-images (corresponding XZ slice) with in-creasing the radius value of X-direction invading
驱替模拟半径 | 渗透率/D | ||
---|---|---|---|
X方向 | Y方向 | Z方向 | |
0 | 0.9330 | 0.9076 | 0.4804 |
1.0 | 0.9278 | 0.9024 | 0.4730 |
1.5 | 0.8647 | 0.8391 | 0.3864 |
2.0 | 0.6992 | 0.6822 | 0.1371 |
2.5 | 0.3926 | 0.3946 | 0.0000 |
3.0 | 0.1722 | 0.1755 | 0.0000 |
3.5 | 0.0616 | 0.0885 | 0.0000 |
4.0 | 0.0037 | 0.0106 | 0.0000 |
Table 3 Upscaling results with directly applying the average method
驱替模拟半径 | 渗透率/D | ||
---|---|---|---|
X方向 | Y方向 | Z方向 | |
0 | 0.9330 | 0.9076 | 0.4804 |
1.0 | 0.9278 | 0.9024 | 0.4730 |
1.5 | 0.8647 | 0.8391 | 0.3864 |
2.0 | 0.6992 | 0.6822 | 0.1371 |
2.5 | 0.3926 | 0.3946 | 0.0000 |
3.0 | 0.1722 | 0.1755 | 0.0000 |
3.5 | 0.0616 | 0.0885 | 0.0000 |
4.0 | 0.0037 | 0.0106 | 0.0000 |
渗流方向 | 岩石类型 | a | b | R2 |
---|---|---|---|---|
X | 过渡 | 0.0233300 | 23.18 | 0.8236 |
粗粒 | 0.0049630 | 29.54 | 0.9617 | |
细粒 | 0.0182200 | 24.70 | 0.9159 | |
Y | 过渡 | 0.0347600 | 20.35 | 0.7174 |
粗粒 | 0.0043370 | 30.04 | 0.9451 | |
细粒 | 0.0160900 | 25.24 | 0.9113 | |
Z | 过渡 | 0.0003756 | 51.57 | 0.4220 |
粗粒 | 0.0008586 | 45.05 | 0.7541 | |
细粒 | 0.1382000 | 13.59 | 0.8590 |
Table 4 Index and goodness of fitting curve of all layers
渗流方向 | 岩石类型 | a | b | R2 |
---|---|---|---|---|
X | 过渡 | 0.0233300 | 23.18 | 0.8236 |
粗粒 | 0.0049630 | 29.54 | 0.9617 | |
细粒 | 0.0182200 | 24.70 | 0.9159 | |
Y | 过渡 | 0.0347600 | 20.35 | 0.7174 |
粗粒 | 0.0043370 | 30.04 | 0.9451 | |
细粒 | 0.0160900 | 25.24 | 0.9113 | |
Z | 过渡 | 0.0003756 | 51.57 | 0.4220 |
粗粒 | 0.0008586 | 45.05 | 0.7541 | |
细粒 | 0.1382000 | 13.59 | 0.8590 |
渗流方向 | 岩石类型 | a | b | R2 |
---|---|---|---|---|
X | 过渡 | 0.0243600 | 22.57 | 0.7492 |
粗粒 | 0.0044890 | 31.10 | 0.9727 | |
细粒 | 0.0612800 | 18.08 | 0.9704 | |
Y | 过渡 | 0.0398700 | 19.38 | 0.6284 |
粗粒 | 0.0035810 | 32.33 | 0.9494 | |
细粒 | 0.0629000 | 17.78 | 0.9778 | |
Z | 过渡 | 0.0091510 | 24.06 | 0.7239 |
粗粒 | 0.0001462 | 53.77 | 0.8829 | |
细粒 | 0.0051760 | 18.85 | 0.9926 |
Table 5 Index and goodness of fitting curve without the thin layers
渗流方向 | 岩石类型 | a | b | R2 |
---|---|---|---|---|
X | 过渡 | 0.0243600 | 22.57 | 0.7492 |
粗粒 | 0.0044890 | 31.10 | 0.9727 | |
细粒 | 0.0612800 | 18.08 | 0.9704 | |
Y | 过渡 | 0.0398700 | 19.38 | 0.6284 |
粗粒 | 0.0035810 | 32.33 | 0.9494 | |
细粒 | 0.0629000 | 17.78 | 0.9778 | |
Z | 过渡 | 0.0091510 | 24.06 | 0.7239 |
粗粒 | 0.0001462 | 53.77 | 0.8829 | |
细粒 | 0.0051760 | 18.85 | 0.9926 |
[1] | Sheppard A, Latham S, Middleton J, et al.Techni-ques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 2014, 324(1):49-56 |
[2] | Ritman E L. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng, 2011, 13(5):31-52 |
[3] | 姚军, 赵秀才, 衣艳静, 等数字岩芯技术现状及展望.油气地质与采收率, 2005, 12(6):52-54 |
[4] | Cnudde V, Boone M N. High-resolution X-ray com-puted tomography in geosciences: a review of the current technology and applications. Earth-Science Reviews, 2013, 123(1):1-17 |
[5] | Helliwell J R, Sturrock C J, Grayling K M, et al. Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: a review. European Journal of Soil Science, 2013, 64(3):279-297 |
[6] | Nakashima Y, Mitsuhata Y, Nishiwaki J, et al. Non-destructive analysis of oil-contaminated soil core samples by X-ray computed tomography and low-field nuclear magnetic resonance relaxometry: a case study. Water, Air,Soil Pollution, 2011, 214:681-698 |
[7] | Sakellariou A, Sawkins T J, Senden T J, et al. X-ray tomography for mesoscale physics applications. Physica A: Statistical Mechanics and its Applica-tions, 2004, 339(1/2):152-158 |
[8] | Mavko G, Mukerji T, Dvorkin J.The rock physics handbook: tools for seismic analysis of porous me-dia. Cambridge: Cambridge University Press, 2009 |
[9] | Arns C H, Knackstedt M A, Martys N.Cross-property correlations and permeability estimation in sandstone. Physical Review E, 2005, 72(4): 046304 |
[10] | 孙海, 姚军, 张磊, 等 基于孔隙结构的页岩渗透率计算方法.中国石油大学学报(自然科学版), 2014, 38(2):92-98 |
[11] | 王晨晨, 姚军, 杨永飞, 等 基于格子玻尔兹曼方法的碳酸盐岩数字岩芯渗流特征分析.中国石油大学学报(自然科学版), 2012, 36(6):94-98 |
[12] | 王鑫, 姚军, 杨永飞, 等 基于组合式平板模型预测曲面裂缝数字岩芯渗透率的方法.中国石油大学学报(自然科学版), 2013, 37(6):82-86 |
[13] | Martys N S, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E 1996, 53(1):743-750 |
[14] | Arns C H, Knackstedt M A, Pinczewski M V, et al. Accurate estimation of transport properties from mic- rotomographic images. Geophysical Research Letters 2001, 28(17):3361-3364 |
[15] | Qian Y H, Zhou Y. Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation. EPL (Europhysics Letters) 1998, 42(4):359-364 |
[16] | Qian Y, d’Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. EPL (Europhy-sics Letters) 1992, 17(6):479-484 |
[17] | Levitz P. Toolbox for 3D imaging and modeling of porous media: Relationship with transport properties. Cement and Concrete Research 2007, 37(3):351- 359 |
[18] | Chen S, Doolen G D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 1998, 30(1):329-364 |
[19] | Inamuro T, Ogata T, Tajima S, et al. A lattice Boltz-mann method for incompressible two-phase flows with large density differences. Journal of Computa-tional Physics 2004, 198(2):628-644 |
[20] | Mecke K R. Morphology of spatial patterns — porous media, spinodal decomposition and dissipative struc-tures. Acta Physica Polonica B 1997, 28(1):1747- 1782 |
[21] | Arns C H, Mecke J, Mecke K, et al. Second-order analysis by variograms for curvature measures of two-phase structures. The European Physical Journal B: Condensed Matter and Complex Systems 2005, 47(3):397-409 |
[22] | Arns C H, Knackstedt M A, Pinczewski M V, et al.Euler-Poincaré characteristics of classes of disorde-red media. Physical Review E, 2001, 63(3): 031112 |
[23] | Arns C H.The influence of morphology on physical properties of reservoir rocks [D]. Sydeny: The Uni-versity of New South Wales, 2002 |
[24] | Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory 1982, 28(2):129-137 |
[25] | Ismail N I.Rock typing using the complete set of additive morphological descriptors [D]. Sydney: The University of New South Wales, 2014 |
[26] | Adler P M.Porous media: geometry and transports. Boston: Butterworth-Heinemann, 1992 |
[27] | Hilfer R. Local-porosity theory for flow in porous media. Physical Review B 1992, 45(13):7115-7121 |
[28] | Arns C H. Morphy Uesr Guide. Sydeny: The Uni-versity of New South Wales, 2015 |
[29] | Schulz V, Wargo E, Kumbur E. Pore-morphology-based simulation of drainage in porous media fea-turing a locally variable contact angle. Transport in Porous Media 2015, 107(1):13-25 |
[1] | SHENG Yingshuai, HU Qingxiong, GAO Hui, SHI Yongmin, DANG Yongchao, SHAO Fei, DU Shuheng, FANG Yuanyuan. Evaluation on Stress Sensibility of Low Reservoir in Situ Conditions [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(6): 1025-1033. |
[2] | ZHANG Zhiqiang, SHI Yongmin, BU Xiangqian, LIANG Yaohuan, ZHANG Enyu. A Study of in-situ Stress Direction Change during Waterflooding in the Low Permeability Reservoirs [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 861-870. |
[3] | FANG Yuanyuan, SHI Yongmin, WANG Lei, DU Shuheng, SHENG Yingshuai. Scattered Sand Rock Mechanics Field Modeling Based on Seismic Pre-stack Inversion [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(6): 1040-1046. |
[4] | JU Wei,HOU Guiting,HUANG Shaoying,REN Kangxu. Evaluation of the Ahe Sandstone Tectonic Fractures in the Yinan-Tuzi Area, Kuqa Depression [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 859-866. |
[5] | LI Xiaomin,SHI Yongmin,JIANG Hongfu,WANG Lei,QIN Xiaoshuang,WU Wenjuan,CHAI Zhi. Volcanic Debris Flow: A New Type of Lower Cretaceous Reservoir in Hailar-Tamtsag Basin [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(2): 277-287. |
[6] | WU Wenjuan,SHI Yongmin,WANG Xiaojun,LIU Hongtao,QIN Xiaoshuang,WANG Lei,CHAI Zhi,LI Xiaomin. Theory and Application of Numerical Simulation of Asymmetric Hydraulic Fractures in Ultra-Low Permeability Reservoirs [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(6): 895-901. |
[7] | WANG Bo,PEI Xiedi,LIAO Shaobin. Frequency Dependence of The Properties about High Permeability Ferrite and Transformer [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||