Acta Scientiarum Naturalium Universitatis Pekinensis ›› 2017, Vol. 53 ›› Issue (3): 535-544.DOI: 10.13209/j.0479-8023.2017.057
• Orginal Article • Previous Articles Next Articles
Ying LI1,2, Li LIN3, Wenyan ZHU1,2, Zhenhua ZHANG1, Jinsheng HE1,3
Received:
2016-02-11
Revised:
2016-04-15
Online:
2017-05-20
Published:
2017-05-20
李颖1,2, 林笠3, 朱文琰1,2, 张振华1, 贺金生1,3
基金资助:
Ying LI, Li LIN, Wenyan ZHU, Zhenhua ZHANG, Jinsheng HE. Responses of Leaf Traits to Nitrogen and Phosphorus Additions across Common Species in an Alpine Grassland on the Qinghai-Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 535-544.
李颖, 林笠, 朱文琰, 张振华, 贺金生. 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应[J]. 北京大学学报自然科学版, 2017, 53(3): 535-544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xbna.pku.edu.cn/EN/10.13209/j.0479-8023.2017.057
物种 | 科 | 功能群 |
---|---|---|
异针茅Stipa aliena | 禾本科 | 多年生禾草类 |
垂穗披碱草Elymus nutans | 禾本科 | 多年生禾草类 |
矮嵩草Kobresia humilis | 莎草科 | 多年生禾草类 |
麻花艽Gentiana straminea | 龙胆科 | 多年生杂类草 |
美丽风毛菊Saussurea pulchra | 菊科 | 多年生杂类草 |
高山豆Tibetia himalaica | 豆科 | 多年生杂类草 |
青海苜蓿Medicago archiducis-nicolai | 豆科 | 多年生杂类草 |
圆萼刺参Morina chinensis | 川续断科 | 多年生杂类草 |
钉柱委陵菜Potentilla saundersiana | 蔷薇科 | 多年生杂类草 |
重冠紫菀Aster diplostephioides | 菊科 | 多年生杂类草 |
Table 1 Common species and their functional groups in the alpine meadow of Haibei, Qinghai, China
物种 | 科 | 功能群 |
---|---|---|
异针茅Stipa aliena | 禾本科 | 多年生禾草类 |
垂穗披碱草Elymus nutans | 禾本科 | 多年生禾草类 |
矮嵩草Kobresia humilis | 莎草科 | 多年生禾草类 |
麻花艽Gentiana straminea | 龙胆科 | 多年生杂类草 |
美丽风毛菊Saussurea pulchra | 菊科 | 多年生杂类草 |
高山豆Tibetia himalaica | 豆科 | 多年生杂类草 |
青海苜蓿Medicago archiducis-nicolai | 豆科 | 多年生杂类草 |
圆萼刺参Morina chinensis | 川续断科 | 多年生杂类草 |
钉柱委陵菜Potentilla saundersiana | 蔷薇科 | 多年生杂类草 |
重冠紫菀Aster diplostephioides | 菊科 | 多年生杂类草 |
变异来源 | df | LDMC | SLA | LC | LN | LP |
---|---|---|---|---|---|---|
N添加 (N) | 1 | 28.24*** | 12.80** | 12.00** | 37.30*** | 3.61 |
P添加 (P) | 1 | 60.61*** | 31.70*** | 33.00*** | 3.49 | 1081.42*** |
Species (S) | 9 | 656.03*** | 144.82*** | 58.00*** | 174.55*** | 50.37*** |
N×P | 1 | 18.85** | 11.08** | 3.00 | 4.13 | 0.04 |
N×S | 9 | 1.25 | 1.33 | 4.00*** | 12.46*** | 0.87 |
P×S | 9 | 0.98 | 1.34 | 1.00 | 2.17* | 16.66*** |
N×P×S | 9 | 0.63 | 0.66 | 1.00 | 2.13* | 1.31 |
Table 2 Three-way ANOVA test of effects of N addition, P addition, species and their interactions on leaf dry matter content, specific leaf area, leaf C, N and P concentrations
变异来源 | df | LDMC | SLA | LC | LN | LP |
---|---|---|---|---|---|---|
N添加 (N) | 1 | 28.24*** | 12.80** | 12.00** | 37.30*** | 3.61 |
P添加 (P) | 1 | 60.61*** | 31.70*** | 33.00*** | 3.49 | 1081.42*** |
Species (S) | 9 | 656.03*** | 144.82*** | 58.00*** | 174.55*** | 50.37*** |
N×P | 1 | 18.85** | 11.08** | 3.00 | 4.13 | 0.04 |
N×S | 9 | 1.25 | 1.33 | 4.00*** | 12.46*** | 0.87 |
P×S | 9 | 0.98 | 1.34 | 1.00 | 2.17* | 16.66*** |
N×P×S | 9 | 0.63 | 0.66 | 1.00 | 2.13* | 1.31 |
处理 | LDMC/(g · kg-1) | SLA/ (cm2 · g-1) | LC/(g · kg-1) | LN/(g · kg-1) | LP/(g · kg-1) |
---|---|---|---|---|---|
对照 | 254.66±13.94 | 168.94±9.30 | 441.77±1.78 | 24.53±1.18 | 1.65±0.05 |
N添加 | 250.21±13.54 | 171.29±8.52 | 443.03±1.46 | 26.83±1.09 | 1.60±0.05 |
P添加 | 248.83±13.99 | 174.41±8.44 | 436.08±1.65 | 24.48±1.28 | 3.08±0.13 |
NP添加 | 224.83±11.84 | 197.46±9.26 | 440.35±1.71 | 28.98±1.10 | 2.88±0.10 |
Table 3 Responses of LDMC, SLA, LC, LN and LP to nutrient additions for common species (mean±SE)
处理 | LDMC/(g · kg-1) | SLA/ (cm2 · g-1) | LC/(g · kg-1) | LN/(g · kg-1) | LP/(g · kg-1) |
---|---|---|---|---|---|
对照 | 254.66±13.94 | 168.94±9.30 | 441.77±1.78 | 24.53±1.18 | 1.65±0.05 |
N添加 | 250.21±13.54 | 171.29±8.52 | 443.03±1.46 | 26.83±1.09 | 1.60±0.05 |
P添加 | 248.83±13.99 | 174.41±8.44 | 436.08±1.65 | 24.48±1.28 | 3.08±0.13 |
NP添加 | 224.83±11.84 | 197.46±9.26 | 440.35±1.71 | 28.98±1.10 | 2.88±0.10 |
Fig. 2 Common species ranking based on traits of the leaf economic spectrum under different nitrogen and phosphorus conditions in the alpine grassland in Haibei, Qinghai, China
功能群 | 处理 | LDMC/(g·kg-1) | SLA/ (cm2·g-1) | LC/(g·kg-1) | LN/(g·kg-1) | LP/(g·kg-1) |
---|---|---|---|---|---|---|
禾草类 | 对照 | 360.12±16.95 | 127.73±10.92 | 446.90±1.24a | 20.03±0.62b | 1.35±0.08b |
N添加 | 359.18±14.86 | 133.81±11.47 | 448.51±1.21a | 22.54±0.61ab | 1.29±0.06b | |
P添加 | 358.96±17.93 | 137.50±12.10 | 440.48±1.58b | 19.83±0.84b | 2.74±0.17a | |
NP添加 | 318.01±11.50 | 158.31±16.29 | 447.10±1.60a | 25.42±1.04a | 2.54±0.12a | |
杂类草 | 对照 | 207.97±8.42 | 187.97±10.58 | 439.57±2.35 | 26.46±1.50 | 1.78±0.04b |
N添加 | 203.51±7.81 | 187.35±9.55 | 440.69±1.83 | 28.67±1.39 | 1.73±0.05b | |
P添加 | 201.63±7.92 | 190.23±9.33 | 434.19±2.14 | 26.48±1.63 | 3.11±0.14a | |
NP添加 | 184.90±7.88 | 214.24±9.57 | 437.45±2.10 | 30.50±1.40 | 3.02±0.12a |
Table 4 Responses of LDMC, SLA, LC, LN and LP to nutrient additions for graminoids and forbs (mean ±SE)
功能群 | 处理 | LDMC/(g·kg-1) | SLA/ (cm2·g-1) | LC/(g·kg-1) | LN/(g·kg-1) | LP/(g·kg-1) |
---|---|---|---|---|---|---|
禾草类 | 对照 | 360.12±16.95 | 127.73±10.92 | 446.90±1.24a | 20.03±0.62b | 1.35±0.08b |
N添加 | 359.18±14.86 | 133.81±11.47 | 448.51±1.21a | 22.54±0.61ab | 1.29±0.06b | |
P添加 | 358.96±17.93 | 137.50±12.10 | 440.48±1.58b | 19.83±0.84b | 2.74±0.17a | |
NP添加 | 318.01±11.50 | 158.31±16.29 | 447.10±1.60a | 25.42±1.04a | 2.54±0.12a | |
杂类草 | 对照 | 207.97±8.42 | 187.97±10.58 | 439.57±2.35 | 26.46±1.50 | 1.78±0.04b |
N添加 | 203.51±7.81 | 187.35±9.55 | 440.69±1.83 | 28.67±1.39 | 1.73±0.05b | |
P添加 | 201.63±7.92 | 190.23±9.33 | 434.19±2.14 | 26.48±1.63 | 3.11±0.14a | |
NP添加 | 184.90±7.88 | 214.24±9.57 | 437.45±2.10 | 30.50±1.40 | 3.02±0.12a |
处理 | 物种排序 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
对照 | Sa | Kh | En | Gs | Mc | Ps | Sp | Ad | Ma | Th |
N添加 | Sa | Kh | En | Gs | Mc | Ps | Sp | Ad | Ma | Th |
P添加 | Sa | Mc | Gs | Kh | En | Ps | Sp | Ad | Ma | Th |
NP添加 | Sa | Kh | Gs | Mc | En | Ps | Sp | Ma | Ad | Th |
Table 5 Rankings of ten common species based on the PCA axis 1 in the four nutrient additions treatments in the alpine meadow of Haibei, Qinghai
处理 | 物种排序 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
对照 | Sa | Kh | En | Gs | Mc | Ps | Sp | Ad | Ma | Th |
N添加 | Sa | Kh | En | Gs | Mc | Ps | Sp | Ad | Ma | Th |
P添加 | Sa | Mc | Gs | Kh | En | Ps | Sp | Ad | Ma | Th |
NP添加 | Sa | Kh | Gs | Mc | En | Ps | Sp | Ma | Ad | Th |
Fig. 3 Shifts of species leaf traits across multivariate trait space in response to N addition, P addition and NP addition in the alpine grassland in Haibei, Qinghai
[1] | Violle C, Navas M L, Vile D, et al.Let the concept of trait be functional!. Oikos, 2007, 116: 882-892 |
[2] | Arnold S J.Morphology, performance and fitness. American Zoologist, 1983, 23: 347-361 |
[3] | 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2010, 31(1): 150-165 |
[4] | 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 2004, 28(6): 844-852 |
[5] | Wright I J, Reich P B, Westoby M, et al.The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 |
[6] | He J S, Wang Z, Wang X, et al.A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170(4): 835-848 |
[7] | Grime J P, Thompson K, Hunt R et al. Integrated screening validates primary axes of specialisation in plants. Oikos, 1997, 79(2): 259-281 |
[8] | Reich P B, Ellsworth D S, Walters M B, et al.Generality of leaf trait relationships: a test across six biomes. Ecology, 1999, 80(6): 1955-1969 |
[9] | Díaz S, Hodgson J G, Thompson K, et al.The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 2004, 15(3): 295-304 |
[10] | Reich P B.The world-wide ‘fast-slow’ plant econo-mics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301 |
[11] | He J S, Wang X, Flynn D F, et al.Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 2009, 90(10): 2779-2791 |
[12] | Cunningham S A, Summerhayes B, Westoby M.Evolutionary divergences in leaf structure and che-mistry, comparing rainfall and soilnutrient gradients. Ecological Monographs, 1999, 69: 569-588 |
[13] | Dormann C F, Woodin S J.Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Functional Ecology, 2002, 16(1): 4-17 |
[14] | 万宏伟, 杨阳, 白世勤, 等. 羊草草原群落 6 种植物叶片功能特性对氮素添加的响应. 植物生态学报, 2008, 32(3): 611-621 |
[15] | Lienin P, Kleyer M.Plant leaf economics and reproductive investment are responsive to gradients of land use intensity. Agriculture, Ecosystems & Envi-ronment, 2011, 145(1): 67-76 |
[16] | Garnier E, Laurent G, Bellmann A, et al.Consistency of species ranking based on functional leaf traits. New Phytologist, 2001, 152(1): 69-83 |
[17] | Al Haj Khaled R, Duru M, Theau J P, et al. Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 2005, 16(4): 391-398 |
[18] | Ordoñez J C, van Bodegom P M, Witte J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18: 137-149 |
[19] | Heberling J M, Fridley J D.Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 2012, 21(12): 1137-1146 |
[20] | Wright J P, Sutton-Grier A.Does the leaf economic spectrum hold within local species pools across varying environmental conditions?. Functional Ecology, 2012, 26: 1390-1398 |
[21] | Maire V, Gross N, Hill D, et al.Disentangling coordination among functional traits using an indivi-dual-centred model: impact on plant performance at intra-and inter-specific levels. PLoS ONE, 2013, 8: e77372 |
[22] | Walters M B, Gerlach J P.Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 2013, 33: 297-310 |
[23] | 周兴民. 中国嵩草草甸. 北京: 科学出版社, 2001 |
[24] | 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166 |
[25] | 马建静, 吉成均, 韩梅, 等. 青藏高原高寒草地和内蒙古高原温带草地主要双子叶植物叶片解剖特征的比较研究. 中国科学: 生命科学, 2012, 42: 158-172 |
[26] | Geng Y, Wang L, Jin D, et al.Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 2014, 175(2): 445-455 |
[27] | Hong J, Wang X, Wu J.Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the northern Tibetan Plateau. PLoS ONE, 2014: e109052 |
[28] | 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004, 23(4): 558-567 |
[29] | 赵新全, 周兴民. 青藏高原高寒草甸生态系统管理的生态学基础: 海北高寒草甸生态系统研究站. 人类环境杂志, 1999, 28(8): 642-647 |
[30] | Kuo S.Methods of soil analysis, Part 3, Chemical methods. Madison: Soil Science Society of America, 1996: 869-919 |
[31] | Adamidis G C, Kazakou E, Fyllas N M, et al.Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, eastern Mediterranean. PLoS ONE, 2014, 9(5): e96034 |
[32] | Padgett P E, Allen E B.Differential responses to nitrogen fertilization in native shrubs and exotic annuals common to Mediterranean coastal sage scrub of California. Plant Ecology, 1999, 144(1): 93-101 |
[33] | Lawrence D.Nitrogen and phosphorus enhance growth and luxury consumption of four secondary forest tree species in Borneo. Journal of Tropical Ecology, 2001, 17(6): 859-869 |
[34] | Xia J, Wan S.Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 2008, 179(2): 428-439 |
[35] | 胡文祥, 李伟, 杜国祯. 基于物种性状的两种高寒草甸优势禾草对施肥的响应. 兰州大学学报(自然科学版), 2011, 47(6): 68-74 |
[36] | 宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 2014, 38(3): 231-237 |
[37] | 宾振钧, 张仁懿, 张文鹏, 等. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 2015, 35(14): 1-10 |
[38] | 赵新风, 徐海量, 张鹏, 等. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 2014, 38(2): 134-146 |
[39] | Garnier E, Vancaeyzeele S.Carbon and nitrogen content of congeneric annual and perennial grass species: relationships with growth. Plant, Cell & Environment, 1994, 17(4): 399-407 |
[40] | Wright I J, Cannon K.Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15(3): 351-359 |
[41] | Wilson P J, Thompson K E N, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155-162 |
[42] | Li Y, Johnson D A, Su Y, et al.Specific leaf area and leaf dry matter content of plants growing in sand dunes. Botanical Bulletin of Academia Sinica, 2005, 46: 127-134 |
[43] | Aerts R, Chapin III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67 |
[44] | Chapin III F S. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 1980, 11: 233-260 |
[45] | Van Wijk M T, Williams M, Gough L, et al. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?. Journal of Ecology, 2003, 91(4): 664-676 |
[46] | Funk J L, Jones C G, Lerdau M T.Leaf-and shoot-level plasticity in response to different nutrient and water availabilities. Tree Physiology, 2007, 27(12): 1731-1739 |
[47] | Pontes D S L, Louault F, Carrère P, et al. The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany, 2010: mcq066 |
[48] | Fonseca C R, Overton J M, Collins B, et al.Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 2000, 88(6): 964-977 |
[49] | Pensa M, Karu H, Luud A, et al.Within-species correlations in leaf traits of three boreal plant species along a latitudinal gradient. Plant Ecology, 2010, 208(1): 155-166 |
[50] | Wright I J, Reich P B, Cornelissen J H, et al.Modulation of leaf economic traits and trait rela-tionships by climate. Global Ecology and Biogeo-graphy, 2005, 14(5): 411-421 |
[51] | Cordell S, Goldstein G, Meinzer F C, et al.Mor-phological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymor-pha canopy trees in Hawaii. Tree Physiology, 2001, 21: 43-50 |
[52] | Bubier J L, Smith R, Juutinen S, et al.EVects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oeco-logia, 2011, 167: 355-368 |
[53] | Van de Weg M J, Shaver G R, Salmon V G. Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic. Plant Ecology, 2013, 214: 1273-1286 |
[1] |
LI Xiuping, AN Lihua, NI Xiaofeng, JI Chengjun.
Response of Leaf Amino Acids of Understory Shrubs to Nitrogen Addition
in Primary Forest and Secondary Forest of Mt. Jianfengling
[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(4): 660-670.
|
[2] | QU Tiantian, YAN Tao, ZHANG Wen, ZENG Hui. Responses of Herbaceous Community Characteristics and Biomass to Nitrogen Addition in a Larix principis- rupprechtii Plantation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 587-596. |
[3] | JIANG Xingxing, ZOU Anlong, WANG Yuanyuan, ZHOU Xuli, JI Chengjun. Leaf Stomatal Traits of Woody Plants and Their Response to Nitrogen Addition in Typical Forests in Eastern China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(4): 839-847. |
[4] | HU Junyu,ZHU Jianxiao,ZHOU Zhang,LI Peng,CUI Jun,TANG Zhiyao,FANG Jingyun. Effects of Experimental Nitrogen Additions on Understory Species Diversity in Four Forests in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(5): 904-910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||