[1] |
廖波, 籍国东, 程李秋. 含烃废水中硫化物生物氧化的影响因素. 北京大学学报(自然科学版), 2008, 44(6): 958-964
|
[2] |
刘先树, 黄盼. 硫化物废水的生物处理技术研究. 环境科学与管理, 2009, 34(2): 101-104
|
[3] |
Henshaw P F, Zhu W.Biological conversion of hydrogen sulfide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Research, 2001, 35(15): 3605-3610
|
[4] |
Logan B E, Hamelers B, Rozendal R, et al.Microbial fuel cells: methodology and technology. Environ-mental Science & Technology, 2006, 40(17): 5181-5192
|
[5] |
Kiely P D, Cusick R, Call D F, et al.Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis celloperation using two different wastewaters. Bioresource Technology, 2011, 102(1): 388-394
|
[6] |
Rabaey K, Verstraete W.Microbial fuel cells: novel biotechnology for energy generation. Trends Biotech-nology, 2006, 23(6): 291-298
|
[7] |
Cai J, Zheng P, Qaisar M, et al.Effect of operating modes on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Journal of Industrial Microbiology & Biotechnology, 2014, 41(5): 795-802
|
[8] |
Dutta P K, Rabaey K, Yuan Z, et al.Spontaneous electrochemical removal of aqueous sulfide. Water Research, 2008, 42(20): 4965-4975
|
[9] |
Karhadkar. Sulfide and sulfate inhibition of methano-genesis. Water Research, 1987, 21(9): 1061-1066
|
[10] |
Zhang B, Zhang J, Liu Y, et al.Identification of removal principles and involved bacteria in microbial fuel cells for sulfide removal and electricity genera-tion. International Journal of Hydrogen Energy, 2013, 38(33): 14348-14355
|
[11] |
Yang S, Jia B, Liu H.Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 2009, 100(3): 197-1202
|
[12] |
Zhang B, Zhao H, Shi C, et al.Simultaneous removal of sulfide and organics with vanadium(Ⅴ) reduction in microbial fuel cells. Journal of Chemical Techno-logy and Biotechnology, 2009, 84(12): 1780-1786
|
[13] |
Zhang B, Feng C, Ni J, et al.Simultaneous reduction of vanadium (Ⅴ) and chromium (Ⅵ) with enhanced energy recovery based on microbial fuel cell tech-nology. Journal of Power Sources, 2012, 204: 34-39
|
[14] |
Manohar A K, Bretschger O, Nealson K H, et al.The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry, 2008, 72(2): 149-154
|
[15] |
Ieropoulos I A, Greenman J, Melhuish C, et al.Comparative study of three types of microbial fuel cell. Enzyme Microbial Technology, 2005, 37(2): 238-245
|
[16] |
Cooney M J, Roschi E, Marison I W, et al.Physiologic studies with the sulfate-reducing bacte-rium desulfovibrio desulfuricans: evaluation for use in a biofuel cell. Enzyme Microbial Technology, 1996, 18(5): 358-365
|
[17] |
Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism: organism carbon oxidation cou-pled to dissimilatory reduction of iron and manga-nese. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480
|
[18] |
Zhi Y, Liu H, Li Z, et al.Improvement of microbial fuel cells performance using bioaugmentation. Journal of Biotechnology, 2008, 136: S660-S661
|
[19] |
Zhang B, Zhou S, Zhao H, et al.Factors affecting the performance of microbial fuel cells for sulfide and vanadium (Ⅴ) treatment. Bioprocess and Biosystems Engineering, 2010, 33(2): 187-194
|
[20] |
Rabaey K, Boon N, Hofte M, et al.Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology, 2005, 39(9): 3401-3408
|
[21] |
Ren Z, Ramasamy R P, Cloud-Owen S R, et al. Time-course correlation of biofilm properties and electro-chemical performance in single-chamber microbial fuel cells. Bioresource Technology, 2011, 102(1): 416-421
|