Acta Scientiarum Naturalium Universitatis Pekinensis

Previous Articles     Next Articles

Cauchy Problem for the “Bad” Boussinesq-Type Equation with Damping Term

LI Qingshan1 LI Hong2 SONG Changming2ZHANG Yiran3   

  1. 1Department of Mathematics, Zhengzhou University, Zhengzhou 450001; 2College of Science, Zhongyuan University of Technology, Zhengzhou 450007; 3School of Mathematical Sciences, Peking University, Beijing 100871; E-mail: liqingshan@zzu.edu.cn?
  • Received:2008-03-06 Online:2008-09-20 Published:2008-09-20

具阻尼项的“坏”的Boussinesq型方程的Cauchy问题

李清善1,李红2,宋长明2,张熠然3   

  1. 1郑州大学数学系,郑州450001;2中原工学院理学院,郑州450007;3北京大学数学科学学院,北京100871;E-mail:liqingshan@zzu.edu.cn

Abstract: The Cauchy problem for the “bad” Boussinesq-type equation with damping term uu-uxx-2kuxxt-αuxxxx=β(u<>sup>n)xx is studied Where k, α and β are real numbers, with k>0,α>0, and n≥2 is an integer It proves that for any T>0 the Cauchy problem admits a global smooth solution u∈C((0,T];H(R))∩C([0,T];H1(R))∩C1([0,T];H-1(R)) under suitable assumptions on the initial data

Key words: “bad” Boussinesq-type equation, Cauchy problem, global smooth solution

摘要: 研究一类具阻尼项的“坏”的Boussinesq型方程uu-uxx-2kuxxt-αuxxxx=β(u<>sup>n)xx的Cauchy问题,其中k,α为大于零的实数,β是实数,n≥2是整数。在关于初值的适当假设下,证明了Cauchy问题存在一个整体光滑解u∈C((0,T];H(R))∩C([0,T];H1(R))∩C1([0,T];H-1(R))对任何T>0。

关键词: “坏”的Boussinesq型方程, Cauchy问题, 整体光滑解

CLC Number: